This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The diagonal functor is a fully faithful functor from a category C to the category of functors from a terminal category to C . (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diagffth.c | |- ( ph -> C e. Cat ) |
|
| diagffth.d | |- ( ph -> D e. TermCat ) |
||
| diagffth.q | |- Q = ( D FuncCat C ) |
||
| diagffth.l | |- L = ( C DiagFunc D ) |
||
| Assertion | diagffth | |- ( ph -> L e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diagffth.c | |- ( ph -> C e. Cat ) |
|
| 2 | diagffth.d | |- ( ph -> D e. TermCat ) |
|
| 3 | diagffth.q | |- Q = ( D FuncCat C ) |
|
| 4 | diagffth.l | |- L = ( C DiagFunc D ) |
|
| 5 | relfunc | |- Rel ( C Func Q ) |
|
| 6 | 2 | termccd | |- ( ph -> D e. Cat ) |
| 7 | 4 1 6 3 | diagcl | |- ( ph -> L e. ( C Func Q ) ) |
| 8 | 1st2nd | |- ( ( Rel ( C Func Q ) /\ L e. ( C Func Q ) ) -> L = <. ( 1st ` L ) , ( 2nd ` L ) >. ) |
|
| 9 | 5 7 8 | sylancr | |- ( ph -> L = <. ( 1st ` L ) , ( 2nd ` L ) >. ) |
| 10 | 7 | func1st2nd | |- ( ph -> ( 1st ` L ) ( C Func Q ) ( 2nd ` L ) ) |
| 11 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 12 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 13 | simprl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 14 | simprr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 15 | eqid | |- ( D Nat C ) = ( D Nat C ) |
|
| 16 | 2 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> D e. TermCat ) |
| 17 | 1 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. Cat ) |
| 18 | 4 11 12 13 14 15 16 17 | diag2f1o | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` L ) y ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( ( ( 1st ` L ) ` x ) ( D Nat C ) ( ( 1st ` L ) ` y ) ) ) |
| 19 | 18 | ralrimivva | |- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` L ) y ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( ( ( 1st ` L ) ` x ) ( D Nat C ) ( ( 1st ` L ) ` y ) ) ) |
| 20 | 3 15 | fuchom | |- ( D Nat C ) = ( Hom ` Q ) |
| 21 | 11 12 20 | isffth2 | |- ( ( 1st ` L ) ( ( C Full Q ) i^i ( C Faith Q ) ) ( 2nd ` L ) <-> ( ( 1st ` L ) ( C Func Q ) ( 2nd ` L ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` L ) y ) : ( x ( Hom ` C ) y ) -1-1-onto-> ( ( ( 1st ` L ) ` x ) ( D Nat C ) ( ( 1st ` L ) ` y ) ) ) ) |
| 22 | 10 19 21 | sylanbrc | |- ( ph -> ( 1st ` L ) ( ( C Full Q ) i^i ( C Faith Q ) ) ( 2nd ` L ) ) |
| 23 | df-br | |- ( ( 1st ` L ) ( ( C Full Q ) i^i ( C Faith Q ) ) ( 2nd ` L ) <-> <. ( 1st ` L ) , ( 2nd ` L ) >. e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |
|
| 24 | 22 23 | sylib | |- ( ph -> <. ( 1st ` L ) , ( 2nd ` L ) >. e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |
| 25 | 9 24 | eqeltrd | |- ( ph -> L e. ( ( C Full Q ) i^i ( C Faith Q ) ) ) |