This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfssr2 | |- _S = ( ( _V X. _V ) \ ran ( _E |X. ( _V \ _E ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epel | |- ( z _E x <-> z e. x ) |
|
| 2 | brvdif | |- ( z ( _V \ _E ) y <-> -. z _E y ) |
|
| 3 | epel | |- ( z _E y <-> z e. y ) |
|
| 4 | 2 3 | xchbinx | |- ( z ( _V \ _E ) y <-> -. z e. y ) |
| 5 | 1 4 | anbi12i | |- ( ( z _E x /\ z ( _V \ _E ) y ) <-> ( z e. x /\ -. z e. y ) ) |
| 6 | 5 | exbii | |- ( E. z ( z _E x /\ z ( _V \ _E ) y ) <-> E. z ( z e. x /\ -. z e. y ) ) |
| 7 | 6 | notbii | |- ( -. E. z ( z _E x /\ z ( _V \ _E ) y ) <-> -. E. z ( z e. x /\ -. z e. y ) ) |
| 8 | dfss6 | |- ( x C_ y <-> -. E. z ( z e. x /\ -. z e. y ) ) |
|
| 9 | 7 8 | bitr4i | |- ( -. E. z ( z _E x /\ z ( _V \ _E ) y ) <-> x C_ y ) |
| 10 | 9 | opabbii | |- { <. x , y >. | -. E. z ( z _E x /\ z ( _V \ _E ) y ) } = { <. x , y >. | x C_ y } |
| 11 | rnxrn | |- ran ( _E |X. ( _V \ _E ) ) = { <. x , y >. | E. z ( z _E x /\ z ( _V \ _E ) y ) } |
|
| 12 | 11 | difeq2i | |- ( ( _V X. _V ) \ ran ( _E |X. ( _V \ _E ) ) ) = ( ( _V X. _V ) \ { <. x , y >. | E. z ( z _E x /\ z ( _V \ _E ) y ) } ) |
| 13 | vvdifopab | |- ( ( _V X. _V ) \ { <. x , y >. | E. z ( z _E x /\ z ( _V \ _E ) y ) } ) = { <. x , y >. | -. E. z ( z _E x /\ z ( _V \ _E ) y ) } |
|
| 14 | 12 13 | eqtri | |- ( ( _V X. _V ) \ ran ( _E |X. ( _V \ _E ) ) ) = { <. x , y >. | -. E. z ( z _E x /\ z ( _V \ _E ) y ) } |
| 15 | df-ssr | |- _S = { <. x , y >. | x C_ y } |
|
| 16 | 10 14 15 | 3eqtr4ri | |- _S = ( ( _V X. _V ) \ ran ( _E |X. ( _V \ _E ) ) ) |