This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfssr2 | ⊢ S = ( ( V × V ) ∖ ran ( E ⋉ ( V ∖ E ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epel | ⊢ ( 𝑧 E 𝑥 ↔ 𝑧 ∈ 𝑥 ) | |
| 2 | brvdif | ⊢ ( 𝑧 ( V ∖ E ) 𝑦 ↔ ¬ 𝑧 E 𝑦 ) | |
| 3 | epel | ⊢ ( 𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦 ) | |
| 4 | 2 3 | xchbinx | ⊢ ( 𝑧 ( V ∖ E ) 𝑦 ↔ ¬ 𝑧 ∈ 𝑦 ) |
| 5 | 1 4 | anbi12i | ⊢ ( ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
| 7 | 6 | notbii | ⊢ ( ¬ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) ↔ ¬ ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
| 8 | dfss6 | ⊢ ( 𝑥 ⊆ 𝑦 ↔ ¬ ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦 ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ¬ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) ↔ 𝑥 ⊆ 𝑦 ) |
| 10 | 9 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ¬ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ⊆ 𝑦 } |
| 11 | rnxrn | ⊢ ran ( E ⋉ ( V ∖ E ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) } | |
| 12 | 11 | difeq2i | ⊢ ( ( V × V ) ∖ ran ( E ⋉ ( V ∖ E ) ) ) = ( ( V × V ) ∖ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) } ) |
| 13 | vvdifopab | ⊢ ( ( V × V ) ∖ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ¬ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) } | |
| 14 | 12 13 | eqtri | ⊢ ( ( V × V ) ∖ ran ( E ⋉ ( V ∖ E ) ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ¬ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) } |
| 15 | df-ssr | ⊢ S = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ⊆ 𝑦 } | |
| 16 | 10 14 15 | 3eqtr4ri | ⊢ S = ( ( V × V ) ∖ ran ( E ⋉ ( V ∖ E ) ) ) |