This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of the range Cartesian product of classes. (Contributed by Peter Mazsa, 1-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rnxrn | |- ran ( R |X. S ) = { <. x , y >. | E. u ( u R x /\ u S y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass | |- ( ( w = <. x , y >. /\ u R x /\ u S y ) <-> ( w = <. x , y >. /\ ( u R x /\ u S y ) ) ) |
|
| 2 | 1 | 3exbii | |- ( E. u E. x E. y ( w = <. x , y >. /\ u R x /\ u S y ) <-> E. u E. x E. y ( w = <. x , y >. /\ ( u R x /\ u S y ) ) ) |
| 3 | exrot3 | |- ( E. u E. x E. y ( w = <. x , y >. /\ ( u R x /\ u S y ) ) <-> E. x E. y E. u ( w = <. x , y >. /\ ( u R x /\ u S y ) ) ) |
|
| 4 | 19.42v | |- ( E. u ( w = <. x , y >. /\ ( u R x /\ u S y ) ) <-> ( w = <. x , y >. /\ E. u ( u R x /\ u S y ) ) ) |
|
| 5 | 4 | 2exbii | |- ( E. x E. y E. u ( w = <. x , y >. /\ ( u R x /\ u S y ) ) <-> E. x E. y ( w = <. x , y >. /\ E. u ( u R x /\ u S y ) ) ) |
| 6 | 2 3 5 | 3bitri | |- ( E. u E. x E. y ( w = <. x , y >. /\ u R x /\ u S y ) <-> E. x E. y ( w = <. x , y >. /\ E. u ( u R x /\ u S y ) ) ) |
| 7 | 6 | abbii | |- { w | E. u E. x E. y ( w = <. x , y >. /\ u R x /\ u S y ) } = { w | E. x E. y ( w = <. x , y >. /\ E. u ( u R x /\ u S y ) ) } |
| 8 | dfrn6 | |- ran ( R |X. S ) = { w | [ w ] `' ( R |X. S ) =/= (/) } |
|
| 9 | n0 | |- ( [ w ] `' ( R |X. S ) =/= (/) <-> E. u u e. [ w ] `' ( R |X. S ) ) |
|
| 10 | elec1cnvxrn2 | |- ( u e. _V -> ( u e. [ w ] `' ( R |X. S ) <-> E. x E. y ( w = <. x , y >. /\ u R x /\ u S y ) ) ) |
|
| 11 | 10 | elv | |- ( u e. [ w ] `' ( R |X. S ) <-> E. x E. y ( w = <. x , y >. /\ u R x /\ u S y ) ) |
| 12 | 11 | exbii | |- ( E. u u e. [ w ] `' ( R |X. S ) <-> E. u E. x E. y ( w = <. x , y >. /\ u R x /\ u S y ) ) |
| 13 | 9 12 | bitri | |- ( [ w ] `' ( R |X. S ) =/= (/) <-> E. u E. x E. y ( w = <. x , y >. /\ u R x /\ u S y ) ) |
| 14 | 13 | abbii | |- { w | [ w ] `' ( R |X. S ) =/= (/) } = { w | E. u E. x E. y ( w = <. x , y >. /\ u R x /\ u S y ) } |
| 15 | 8 14 | eqtri | |- ran ( R |X. S ) = { w | E. u E. x E. y ( w = <. x , y >. /\ u R x /\ u S y ) } |
| 16 | df-opab | |- { <. x , y >. | E. u ( u R x /\ u S y ) } = { w | E. x E. y ( w = <. x , y >. /\ E. u ( u R x /\ u S y ) ) } |
|
| 17 | 7 15 16 | 3eqtr4i | |- ran ( R |X. S ) = { <. x , y >. | E. u ( u R x /\ u S y ) } |