This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered-pair class abstraction defined by a negation. (Contributed by Peter Mazsa, 25-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vvdifopab | |- ( ( _V X. _V ) \ { <. x , y >. | ph } ) = { <. x , y >. | -. ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabidw | |- ( <. x , y >. e. { <. x , y >. | ph } <-> ph ) |
|
| 2 | 1 | notbii | |- ( -. <. x , y >. e. { <. x , y >. | ph } <-> -. ph ) |
| 3 | opelvvdif | |- ( ( x e. _V /\ y e. _V ) -> ( <. x , y >. e. ( ( _V X. _V ) \ { <. x , y >. | ph } ) <-> -. <. x , y >. e. { <. x , y >. | ph } ) ) |
|
| 4 | 3 | el2v | |- ( <. x , y >. e. ( ( _V X. _V ) \ { <. x , y >. | ph } ) <-> -. <. x , y >. e. { <. x , y >. | ph } ) |
| 5 | opabidw | |- ( <. x , y >. e. { <. x , y >. | -. ph } <-> -. ph ) |
|
| 6 | 2 4 5 | 3bitr4i | |- ( <. x , y >. e. ( ( _V X. _V ) \ { <. x , y >. | ph } ) <-> <. x , y >. e. { <. x , y >. | -. ph } ) |
| 7 | 6 | gen2 | |- A. x A. y ( <. x , y >. e. ( ( _V X. _V ) \ { <. x , y >. | ph } ) <-> <. x , y >. e. { <. x , y >. | -. ph } ) |
| 8 | relxp | |- Rel ( _V X. _V ) |
|
| 9 | reldif | |- ( Rel ( _V X. _V ) -> Rel ( ( _V X. _V ) \ { <. x , y >. | ph } ) ) |
|
| 10 | 8 9 | ax-mp | |- Rel ( ( _V X. _V ) \ { <. x , y >. | ph } ) |
| 11 | relopabv | |- Rel { <. x , y >. | -. ph } |
|
| 12 | nfcv | |- F/_ x ( _V X. _V ) |
|
| 13 | nfopab1 | |- F/_ x { <. x , y >. | ph } |
|
| 14 | 12 13 | nfdif | |- F/_ x ( ( _V X. _V ) \ { <. x , y >. | ph } ) |
| 15 | nfopab1 | |- F/_ x { <. x , y >. | -. ph } |
|
| 16 | nfcv | |- F/_ y ( _V X. _V ) |
|
| 17 | nfopab2 | |- F/_ y { <. x , y >. | ph } |
|
| 18 | 16 17 | nfdif | |- F/_ y ( ( _V X. _V ) \ { <. x , y >. | ph } ) |
| 19 | nfopab2 | |- F/_ y { <. x , y >. | -. ph } |
|
| 20 | 14 15 18 19 | eqrelf | |- ( ( Rel ( ( _V X. _V ) \ { <. x , y >. | ph } ) /\ Rel { <. x , y >. | -. ph } ) -> ( ( ( _V X. _V ) \ { <. x , y >. | ph } ) = { <. x , y >. | -. ph } <-> A. x A. y ( <. x , y >. e. ( ( _V X. _V ) \ { <. x , y >. | ph } ) <-> <. x , y >. e. { <. x , y >. | -. ph } ) ) ) |
| 21 | 10 11 20 | mp2an | |- ( ( ( _V X. _V ) \ { <. x , y >. | ph } ) = { <. x , y >. | -. ph } <-> A. x A. y ( <. x , y >. e. ( ( _V X. _V ) \ { <. x , y >. | ph } ) <-> <. x , y >. e. { <. x , y >. | -. ph } ) ) |
| 22 | 7 21 | mpbir | |- ( ( _V X. _V ) \ { <. x , y >. | ph } ) = { <. x , y >. | -. ph } |