This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfoprab3s | |- { <. <. x , y >. , z >. | ph } = { <. w , z >. | ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab2 | |- { <. <. x , y >. , z >. | ph } = { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } |
|
| 2 | nfsbc1v | |- F/ x [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph |
|
| 3 | 2 | 19.41 | |- ( E. x ( E. y w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) <-> ( E. x E. y w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) ) |
| 4 | sbcopeq1a | |- ( w = <. x , y >. -> ( [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph <-> ph ) ) |
|
| 5 | 4 | pm5.32i | |- ( ( w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) <-> ( w = <. x , y >. /\ ph ) ) |
| 6 | 5 | exbii | |- ( E. y ( w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) <-> E. y ( w = <. x , y >. /\ ph ) ) |
| 7 | nfcv | |- F/_ y ( 1st ` w ) |
|
| 8 | nfsbc1v | |- F/ y [. ( 2nd ` w ) / y ]. ph |
|
| 9 | 7 8 | nfsbcw | |- F/ y [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph |
| 10 | 9 | 19.41 | |- ( E. y ( w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) <-> ( E. y w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) ) |
| 11 | 6 10 | bitr3i | |- ( E. y ( w = <. x , y >. /\ ph ) <-> ( E. y w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) ) |
| 12 | 11 | exbii | |- ( E. x E. y ( w = <. x , y >. /\ ph ) <-> E. x ( E. y w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) ) |
| 13 | elvv | |- ( w e. ( _V X. _V ) <-> E. x E. y w = <. x , y >. ) |
|
| 14 | 13 | anbi1i | |- ( ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) <-> ( E. x E. y w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) ) |
| 15 | 3 12 14 | 3bitr4i | |- ( E. x E. y ( w = <. x , y >. /\ ph ) <-> ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) ) |
| 16 | 15 | opabbii | |- { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } = { <. w , z >. | ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) } |
| 17 | 1 16 | eqtri | |- { <. <. x , y >. , z >. | ph } = { <. w , z >. | ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) } |