This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfoprab3s | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( V × V ) ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab2 | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } = { 〈 𝑤 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } | |
| 2 | nfsbc1v | ⊢ Ⅎ 𝑥 [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 | |
| 3 | 2 | 19.41 | ⊢ ( ∃ 𝑥 ( ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
| 4 | sbcopeq1a | ⊢ ( 𝑤 = 〈 𝑥 , 𝑦 〉 → ( [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ↔ 𝜑 ) ) | |
| 5 | 4 | pm5.32i | ⊢ ( ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ↔ ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ↔ ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) |
| 7 | nfcv | ⊢ Ⅎ 𝑦 ( 1st ‘ 𝑤 ) | |
| 8 | nfsbc1v | ⊢ Ⅎ 𝑦 [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 | |
| 9 | 7 8 | nfsbcw | ⊢ Ⅎ 𝑦 [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 |
| 10 | 9 | 19.41 | ⊢ ( ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
| 11 | 6 10 | bitr3i | ⊢ ( ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ( ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
| 12 | 11 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ∃ 𝑥 ( ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
| 13 | elvv | ⊢ ( 𝑤 ∈ ( V × V ) ↔ ∃ 𝑥 ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ) | |
| 14 | 13 | anbi1i | ⊢ ( ( 𝑤 ∈ ( V × V ) ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
| 15 | 3 12 14 | 3bitr4i | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ ( 𝑤 ∈ ( V × V ) ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) ) |
| 16 | 15 | opabbii | ⊢ { 〈 𝑤 , 𝑧 〉 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( V × V ) ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) } |
| 17 | 1 16 | eqtri | ⊢ { 〈 〈 𝑥 , 𝑦 〉 , 𝑧 〉 ∣ 𝜑 } = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ ( V × V ) ∧ [ ( 1st ‘ 𝑤 ) / 𝑥 ] [ ( 2nd ‘ 𝑤 ) / 𝑦 ] 𝜑 ) } |