This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express union of singleton in terms of if . (Contributed by Scott Fenton, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unisnif | |- U. { A } = if ( A e. _V , A , (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue | |- ( A e. _V -> if ( A e. _V , A , (/) ) = A ) |
|
| 2 | unisng | |- ( A e. _V -> U. { A } = A ) |
|
| 3 | 1 2 | eqtr4d | |- ( A e. _V -> if ( A e. _V , A , (/) ) = U. { A } ) |
| 4 | iffalse | |- ( -. A e. _V -> if ( A e. _V , A , (/) ) = (/) ) |
|
| 5 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 6 | 5 | biimpi | |- ( -. A e. _V -> { A } = (/) ) |
| 7 | 6 | unieqd | |- ( -. A e. _V -> U. { A } = U. (/) ) |
| 8 | uni0 | |- U. (/) = (/) |
|
| 9 | 7 8 | eqtrdi | |- ( -. A e. _V -> U. { A } = (/) ) |
| 10 | 4 9 | eqtr4d | |- ( -. A e. _V -> if ( A e. _V , A , (/) ) = U. { A } ) |
| 11 | 3 10 | pm2.61i | |- if ( A e. _V , A , (/) ) = U. { A } |
| 12 | 11 | eqcomi | |- U. { A } = if ( A e. _V , A , (/) ) |