This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfeqvrel2 | |- ( EqvRel R <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eqvrel | |- ( EqvRel R <-> ( RefRel R /\ SymRel R /\ TrRel R ) ) |
|
| 2 | refsymrel2 | |- ( ( RefRel R /\ SymRel R ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) ) |
|
| 3 | dftrrel2 | |- ( TrRel R <-> ( ( R o. R ) C_ R /\ Rel R ) ) |
|
| 4 | 2 3 | anbi12i | |- ( ( ( RefRel R /\ SymRel R ) /\ TrRel R ) <-> ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) /\ ( ( R o. R ) C_ R /\ Rel R ) ) ) |
| 5 | df-3an | |- ( ( RefRel R /\ SymRel R /\ TrRel R ) <-> ( ( RefRel R /\ SymRel R ) /\ TrRel R ) ) |
|
| 6 | df-3an | |- ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ ( R o. R ) C_ R ) ) |
|
| 7 | 6 | anbi1i | |- ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) <-> ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ ( R o. R ) C_ R ) /\ Rel R ) ) |
| 8 | 3anan32 | |- ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R /\ ( R o. R ) C_ R ) <-> ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ ( R o. R ) C_ R ) /\ Rel R ) ) |
|
| 9 | anandi3r | |- ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R /\ ( R o. R ) C_ R ) <-> ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) /\ ( ( R o. R ) C_ R /\ Rel R ) ) ) |
|
| 10 | 7 8 9 | 3bitr2i | |- ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) <-> ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) /\ ( ( R o. R ) C_ R /\ Rel R ) ) ) |
| 11 | 4 5 10 | 3bitr4i | |- ( ( RefRel R /\ SymRel R /\ TrRel R ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) ) |
| 12 | 1 11 | bitri | |- ( EqvRel R <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) ) |