This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the adjoined lift map. (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfadjliftmap2 | |- ( R AdjLiftMap A ) = ( m e. ( A i^i ( dom R u. ( _V \ { (/) } ) ) ) |-> ( m u. [ m ] R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-adjliftmap | |- ( R AdjLiftMap A ) = ( m e. dom ( ( R u. `' _E ) |` A ) |-> [ m ] ( ( R u. `' _E ) |` A ) ) |
|
| 2 | elinel1 | |- ( m e. ( A i^i ( dom R u. ( _V \ { (/) } ) ) ) -> m e. A ) |
|
| 3 | dmuncnvepres | |- dom ( ( R u. `' _E ) |` A ) = ( A i^i ( dom R u. ( _V \ { (/) } ) ) ) |
|
| 4 | 2 3 | eleq2s | |- ( m e. dom ( ( R u. `' _E ) |` A ) -> m e. A ) |
| 5 | ecuncnvepres | |- ( m e. A -> [ m ] ( ( R u. `' _E ) |` A ) = ( m u. [ m ] R ) ) |
|
| 6 | 4 5 | syl | |- ( m e. dom ( ( R u. `' _E ) |` A ) -> [ m ] ( ( R u. `' _E ) |` A ) = ( m u. [ m ] R ) ) |
| 7 | 6 | mpteq2ia | |- ( m e. dom ( ( R u. `' _E ) |` A ) |-> [ m ] ( ( R u. `' _E ) |` A ) ) = ( m e. dom ( ( R u. `' _E ) |` A ) |-> ( m u. [ m ] R ) ) |
| 8 | 3 | mpteq1i | |- ( m e. dom ( ( R u. `' _E ) |` A ) |-> ( m u. [ m ] R ) ) = ( m e. ( A i^i ( dom R u. ( _V \ { (/) } ) ) ) |-> ( m u. [ m ] R ) ) |
| 9 | 1 7 8 | 3eqtri | |- ( R AdjLiftMap A ) = ( m e. ( A i^i ( dom R u. ( _V \ { (/) } ) ) ) |-> ( m u. [ m ] R ) ) |