This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the adjoined lift map. (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfadjliftmap2 | ⊢ ( 𝑅 AdjLiftMap 𝐴 ) = ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) ) ↦ ( 𝑚 ∪ [ 𝑚 ] 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-adjliftmap | ⊢ ( 𝑅 AdjLiftMap 𝐴 ) = ( 𝑚 ∈ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) ↦ [ 𝑚 ] ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) ) | |
| 2 | elinel1 | ⊢ ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) ) → 𝑚 ∈ 𝐴 ) | |
| 3 | dmuncnvepres | ⊢ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) = ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) ) | |
| 4 | 2 3 | eleq2s | ⊢ ( 𝑚 ∈ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) → 𝑚 ∈ 𝐴 ) |
| 5 | ecuncnvepres | ⊢ ( 𝑚 ∈ 𝐴 → [ 𝑚 ] ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) = ( 𝑚 ∪ [ 𝑚 ] 𝑅 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑚 ∈ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) → [ 𝑚 ] ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) = ( 𝑚 ∪ [ 𝑚 ] 𝑅 ) ) |
| 7 | 6 | mpteq2ia | ⊢ ( 𝑚 ∈ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) ↦ [ 𝑚 ] ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) ) = ( 𝑚 ∈ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) ↦ ( 𝑚 ∪ [ 𝑚 ] 𝑅 ) ) |
| 8 | 3 | mpteq1i | ⊢ ( 𝑚 ∈ dom ( ( 𝑅 ∪ ◡ E ) ↾ 𝐴 ) ↦ ( 𝑚 ∪ [ 𝑚 ] 𝑅 ) ) = ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) ) ↦ ( 𝑚 ∪ [ 𝑚 ] 𝑅 ) ) |
| 9 | 1 7 8 | 3eqtri | ⊢ ( 𝑅 AdjLiftMap 𝐴 ) = ( 𝑚 ∈ ( 𝐴 ∩ ( dom 𝑅 ∪ ( V ∖ { ∅ } ) ) ) ↦ ( 𝑚 ∪ [ 𝑚 ] 𝑅 ) ) |