This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restricted union with converse epsilon relation coset of B . (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecuncnvepres | |- ( B e. A -> [ B ] ( ( R u. `' _E ) |` A ) = ( B u. [ B ] R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecunres | |- ( B e. A -> [ B ] ( ( R u. `' _E ) |` A ) = ( [ B ] ( R |` A ) u. [ B ] ( `' _E |` A ) ) ) |
|
| 2 | elecreseq | |- ( B e. A -> [ B ] ( R |` A ) = [ B ] R ) |
|
| 3 | eccnvepres2 | |- ( B e. A -> [ B ] ( `' _E |` A ) = B ) |
|
| 4 | 2 3 | uneq12d | |- ( B e. A -> ( [ B ] ( R |` A ) u. [ B ] ( `' _E |` A ) ) = ( [ B ] R u. B ) ) |
| 5 | 1 4 | eqtrd | |- ( B e. A -> [ B ] ( ( R u. `' _E ) |` A ) = ( [ B ] R u. B ) ) |
| 6 | uncom | |- ( [ B ] R u. B ) = ( B u. [ B ] R ) |
|
| 7 | 5 6 | eqtrdi | |- ( B e. A -> [ B ] ( ( R u. `' _E ) |` A ) = ( B u. [ B ] R ) ) |