This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate definition of df-inito depending on df-termo , without dummy variables. (Contributed by Zhi Wang, 29-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfinito3 | |- InitO = ( TermO o. ( oppCat |` Cat ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres | |- ( c e. Cat -> ( ( oppCat |` Cat ) ` c ) = ( oppCat ` c ) ) |
|
| 2 | 1 | fveq2d | |- ( c e. Cat -> ( TermO ` ( ( oppCat |` Cat ) ` c ) ) = ( TermO ` ( oppCat ` c ) ) ) |
| 3 | 2 | mpteq2ia | |- ( c e. Cat |-> ( TermO ` ( ( oppCat |` Cat ) ` c ) ) ) = ( c e. Cat |-> ( TermO ` ( oppCat ` c ) ) ) |
| 4 | termofn | |- TermO Fn Cat |
|
| 5 | dffn2 | |- ( TermO Fn Cat <-> TermO : Cat --> _V ) |
|
| 6 | 4 5 | mpbi | |- TermO : Cat --> _V |
| 7 | oppccatf | |- ( oppCat |` Cat ) : Cat --> Cat |
|
| 8 | fcompt | |- ( ( TermO : Cat --> _V /\ ( oppCat |` Cat ) : Cat --> Cat ) -> ( TermO o. ( oppCat |` Cat ) ) = ( c e. Cat |-> ( TermO ` ( ( oppCat |` Cat ) ` c ) ) ) ) |
|
| 9 | 6 7 8 | mp2an | |- ( TermO o. ( oppCat |` Cat ) ) = ( c e. Cat |-> ( TermO ` ( ( oppCat |` Cat ) ` c ) ) ) |
| 10 | dfinito2 | |- InitO = ( c e. Cat |-> ( TermO ` ( oppCat ` c ) ) ) |
|
| 11 | 3 9 10 | 3eqtr4ri | |- InitO = ( TermO o. ( oppCat |` Cat ) ) |