This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Hilbert space zero operator. See df0op2 for alternate definition. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-h0op |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ch0o | ||
| 1 | cpjh | ||
| 2 | c0h | ||
| 3 | 2 1 | cfv | |
| 4 | 0 3 | wceq |