This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the spectrum of an operator. Definition of spectrum in Halmos p. 50. (Contributed by NM, 11-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-spec | |- Lambda = ( t e. ( ~H ^m ~H ) |-> { x e. CC | -. ( t -op ( x .op ( _I |` ~H ) ) ) : ~H -1-1-> ~H } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cspc | |- Lambda |
|
| 1 | vt | |- t |
|
| 2 | chba | |- ~H |
|
| 3 | cmap | |- ^m |
|
| 4 | 2 2 3 | co | |- ( ~H ^m ~H ) |
| 5 | vx | |- x |
|
| 6 | cc | |- CC |
|
| 7 | 1 | cv | |- t |
| 8 | chod | |- -op |
|
| 9 | 5 | cv | |- x |
| 10 | chot | |- .op |
|
| 11 | cid | |- _I |
|
| 12 | 11 2 | cres | |- ( _I |` ~H ) |
| 13 | 9 12 10 | co | |- ( x .op ( _I |` ~H ) ) |
| 14 | 7 13 8 | co | |- ( t -op ( x .op ( _I |` ~H ) ) ) |
| 15 | 2 2 14 | wf1 | |- ( t -op ( x .op ( _I |` ~H ) ) ) : ~H -1-1-> ~H |
| 16 | 15 | wn | |- -. ( t -op ( x .op ( _I |` ~H ) ) ) : ~H -1-1-> ~H |
| 17 | 16 5 6 | crab | |- { x e. CC | -. ( t -op ( x .op ( _I |` ~H ) ) ) : ~H -1-1-> ~H } |
| 18 | 1 4 17 | cmpt | |- ( t e. ( ~H ^m ~H ) |-> { x e. CC | -. ( t -op ( x .op ( _I |` ~H ) ) ) : ~H -1-1-> ~H } ) |
| 19 | 0 18 | wceq | |- Lambda = ( t e. ( ~H ^m ~H ) |-> { x e. CC | -. ( t -op ( x .op ( _I |` ~H ) ) ) : ~H -1-1-> ~H } ) |