This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the limit relation for partial functions on the reals. See rlim for its relational expression. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rlim | |- ~~>r = { <. f , x >. | ( ( f e. ( CC ^pm RR ) /\ x e. CC ) /\ A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crli | |- ~~>r |
|
| 1 | vf | |- f |
|
| 2 | vx | |- x |
|
| 3 | 1 | cv | |- f |
| 4 | cc | |- CC |
|
| 5 | cpm | |- ^pm |
|
| 6 | cr | |- RR |
|
| 7 | 4 6 5 | co | |- ( CC ^pm RR ) |
| 8 | 3 7 | wcel | |- f e. ( CC ^pm RR ) |
| 9 | 2 | cv | |- x |
| 10 | 9 4 | wcel | |- x e. CC |
| 11 | 8 10 | wa | |- ( f e. ( CC ^pm RR ) /\ x e. CC ) |
| 12 | vy | |- y |
|
| 13 | crp | |- RR+ |
|
| 14 | vz | |- z |
|
| 15 | vw | |- w |
|
| 16 | 3 | cdm | |- dom f |
| 17 | 14 | cv | |- z |
| 18 | cle | |- <_ |
|
| 19 | 15 | cv | |- w |
| 20 | 17 19 18 | wbr | |- z <_ w |
| 21 | cabs | |- abs |
|
| 22 | 19 3 | cfv | |- ( f ` w ) |
| 23 | cmin | |- - |
|
| 24 | 22 9 23 | co | |- ( ( f ` w ) - x ) |
| 25 | 24 21 | cfv | |- ( abs ` ( ( f ` w ) - x ) ) |
| 26 | clt | |- < |
|
| 27 | 12 | cv | |- y |
| 28 | 25 27 26 | wbr | |- ( abs ` ( ( f ` w ) - x ) ) < y |
| 29 | 20 28 | wi | |- ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) |
| 30 | 29 15 16 | wral | |- A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) |
| 31 | 30 14 6 | wrex | |- E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) |
| 32 | 31 12 13 | wral | |- A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) |
| 33 | 11 32 | wa | |- ( ( f e. ( CC ^pm RR ) /\ x e. CC ) /\ A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) ) |
| 34 | 33 1 2 | copab | |- { <. f , x >. | ( ( f e. ( CC ^pm RR ) /\ x e. CC ) /\ A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) ) } |
| 35 | 0 34 | wceq | |- ~~>r = { <. f , x >. | ( ( f e. ( CC ^pm RR ) /\ x e. CC ) /\ A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) ) } |