This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of the category Cat, which consists of all categories in the universe u (i.e., " u -small categories", see Definition 3.44. of Adamek p. 39), with functors as the morphisms ( catchom , elcatchom ). Definition 3.47 of Adamek p. 40. We do not introduce a specific definition for " u -large categories", which can be expressed as ( Cat \ u ) . (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-catc | ⊢ CatCat = ( 𝑢 ∈ V ↦ ⦋ ( 𝑢 ∩ Cat ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccatc | ⊢ CatCat | |
| 1 | vu | ⊢ 𝑢 | |
| 2 | cvv | ⊢ V | |
| 3 | 1 | cv | ⊢ 𝑢 |
| 4 | ccat | ⊢ Cat | |
| 5 | 3 4 | cin | ⊢ ( 𝑢 ∩ Cat ) |
| 6 | vb | ⊢ 𝑏 | |
| 7 | cbs | ⊢ Base | |
| 8 | cnx | ⊢ ndx | |
| 9 | 8 7 | cfv | ⊢ ( Base ‘ ndx ) |
| 10 | 6 | cv | ⊢ 𝑏 |
| 11 | 9 10 | cop | ⊢ 〈 ( Base ‘ ndx ) , 𝑏 〉 |
| 12 | chom | ⊢ Hom | |
| 13 | 8 12 | cfv | ⊢ ( Hom ‘ ndx ) |
| 14 | vx | ⊢ 𝑥 | |
| 15 | vy | ⊢ 𝑦 | |
| 16 | 14 | cv | ⊢ 𝑥 |
| 17 | cfunc | ⊢ Func | |
| 18 | 15 | cv | ⊢ 𝑦 |
| 19 | 16 18 17 | co | ⊢ ( 𝑥 Func 𝑦 ) |
| 20 | 14 15 10 10 19 | cmpo | ⊢ ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) |
| 21 | 13 20 | cop | ⊢ 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 |
| 22 | cco | ⊢ comp | |
| 23 | 8 22 | cfv | ⊢ ( comp ‘ ndx ) |
| 24 | vv | ⊢ 𝑣 | |
| 25 | 10 10 | cxp | ⊢ ( 𝑏 × 𝑏 ) |
| 26 | vz | ⊢ 𝑧 | |
| 27 | vg | ⊢ 𝑔 | |
| 28 | c2nd | ⊢ 2nd | |
| 29 | 24 | cv | ⊢ 𝑣 |
| 30 | 29 28 | cfv | ⊢ ( 2nd ‘ 𝑣 ) |
| 31 | 26 | cv | ⊢ 𝑧 |
| 32 | 30 31 17 | co | ⊢ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) |
| 33 | vf | ⊢ 𝑓 | |
| 34 | 29 17 | cfv | ⊢ ( Func ‘ 𝑣 ) |
| 35 | 27 | cv | ⊢ 𝑔 |
| 36 | ccofu | ⊢ ∘func | |
| 37 | 33 | cv | ⊢ 𝑓 |
| 38 | 35 37 36 | co | ⊢ ( 𝑔 ∘func 𝑓 ) |
| 39 | 27 33 32 34 38 | cmpo | ⊢ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) |
| 40 | 24 26 25 10 39 | cmpo | ⊢ ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) |
| 41 | 23 40 | cop | ⊢ 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 |
| 42 | 11 21 41 | ctp | ⊢ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } |
| 43 | 6 5 42 | csb | ⊢ ⦋ ( 𝑢 ∩ Cat ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } |
| 44 | 1 2 43 | cmpt | ⊢ ( 𝑢 ∈ V ↦ ⦋ ( 𝑢 ∩ Cat ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } ) |
| 45 | 0 44 | wceq | ⊢ CatCat = ( 𝑢 ∈ V ↦ ⦋ ( 𝑢 ∩ Cat ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } ) |