This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcval.c | |- C = ( CatCat ` U ) |
|
| catcval.u | |- ( ph -> U e. V ) |
||
| catcval.b | |- ( ph -> B = ( U i^i Cat ) ) |
||
| catcval.h | |- ( ph -> H = ( x e. B , y e. B |-> ( x Func y ) ) ) |
||
| catcval.o | |- ( ph -> .x. = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) ) |
||
| Assertion | catcval | |- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcval.c | |- C = ( CatCat ` U ) |
|
| 2 | catcval.u | |- ( ph -> U e. V ) |
|
| 3 | catcval.b | |- ( ph -> B = ( U i^i Cat ) ) |
|
| 4 | catcval.h | |- ( ph -> H = ( x e. B , y e. B |-> ( x Func y ) ) ) |
|
| 5 | catcval.o | |- ( ph -> .x. = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) ) |
|
| 6 | df-catc | |- CatCat = ( u e. _V |-> [_ ( u i^i Cat ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } ) |
|
| 7 | vex | |- u e. _V |
|
| 8 | 7 | inex1 | |- ( u i^i Cat ) e. _V |
| 9 | 8 | a1i | |- ( ( ph /\ u = U ) -> ( u i^i Cat ) e. _V ) |
| 10 | simpr | |- ( ( ph /\ u = U ) -> u = U ) |
|
| 11 | 10 | ineq1d | |- ( ( ph /\ u = U ) -> ( u i^i Cat ) = ( U i^i Cat ) ) |
| 12 | 3 | adantr | |- ( ( ph /\ u = U ) -> B = ( U i^i Cat ) ) |
| 13 | 11 12 | eqtr4d | |- ( ( ph /\ u = U ) -> ( u i^i Cat ) = B ) |
| 14 | simpr | |- ( ( ( ph /\ u = U ) /\ b = B ) -> b = B ) |
|
| 15 | 14 | opeq2d | |- ( ( ( ph /\ u = U ) /\ b = B ) -> <. ( Base ` ndx ) , b >. = <. ( Base ` ndx ) , B >. ) |
| 16 | eqidd | |- ( ( ( ph /\ u = U ) /\ b = B ) -> ( x Func y ) = ( x Func y ) ) |
|
| 17 | 14 14 16 | mpoeq123dv | |- ( ( ( ph /\ u = U ) /\ b = B ) -> ( x e. b , y e. b |-> ( x Func y ) ) = ( x e. B , y e. B |-> ( x Func y ) ) ) |
| 18 | 4 | ad2antrr | |- ( ( ( ph /\ u = U ) /\ b = B ) -> H = ( x e. B , y e. B |-> ( x Func y ) ) ) |
| 19 | 17 18 | eqtr4d | |- ( ( ( ph /\ u = U ) /\ b = B ) -> ( x e. b , y e. b |-> ( x Func y ) ) = H ) |
| 20 | 19 | opeq2d | |- ( ( ( ph /\ u = U ) /\ b = B ) -> <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x Func y ) ) >. = <. ( Hom ` ndx ) , H >. ) |
| 21 | 14 | sqxpeqd | |- ( ( ( ph /\ u = U ) /\ b = B ) -> ( b X. b ) = ( B X. B ) ) |
| 22 | eqidd | |- ( ( ( ph /\ u = U ) /\ b = B ) -> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) = ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) |
|
| 23 | 21 14 22 | mpoeq123dv | |- ( ( ( ph /\ u = U ) /\ b = B ) -> ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) ) |
| 24 | 5 | ad2antrr | |- ( ( ( ph /\ u = U ) /\ b = B ) -> .x. = ( v e. ( B X. B ) , z e. B |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) ) |
| 25 | 23 24 | eqtr4d | |- ( ( ( ph /\ u = U ) /\ b = B ) -> ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) = .x. ) |
| 26 | 25 | opeq2d | |- ( ( ( ph /\ u = U ) /\ b = B ) -> <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. = <. ( comp ` ndx ) , .x. >. ) |
| 27 | 15 20 26 | tpeq123d | |- ( ( ( ph /\ u = U ) /\ b = B ) -> { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 28 | 9 13 27 | csbied2 | |- ( ( ph /\ u = U ) -> [_ ( u i^i Cat ) / b ]_ { <. ( Base ` ndx ) , b >. , <. ( Hom ` ndx ) , ( x e. b , y e. b |-> ( x Func y ) ) >. , <. ( comp ` ndx ) , ( v e. ( b X. b ) , z e. b |-> ( g e. ( ( 2nd ` v ) Func z ) , f e. ( Func ` v ) |-> ( g o.func f ) ) ) >. } = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 29 | 2 | elexd | |- ( ph -> U e. _V ) |
| 30 | tpex | |- { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V |
|
| 31 | 30 | a1i | |- ( ph -> { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } e. _V ) |
| 32 | 6 28 29 31 | fvmptd2 | |- ( ph -> ( CatCat ` U ) = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |
| 33 | 1 32 | eqtrid | |- ( ph -> C = { <. ( Base ` ndx ) , B >. , <. ( Hom ` ndx ) , H >. , <. ( comp ` ndx ) , .x. >. } ) |