This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A path is either a simple path or a cycle (or both). (Contributed by BTernaryTau, 20-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pthisspthorcycl | |- ( F ( Paths ` G ) P -> ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pthdepisspth | |- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) -> F ( SPaths ` G ) P ) |
|
| 2 | 1 | ex | |- ( F ( Paths ` G ) P -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) -> F ( SPaths ` G ) P ) ) |
| 3 | 2 | necon1bd | |- ( F ( Paths ` G ) P -> ( -. F ( SPaths ` G ) P -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 4 | 3 | anc2li | |- ( F ( Paths ` G ) P -> ( -. F ( SPaths ` G ) P -> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) |
| 5 | iscycl | |- ( F ( Cycles ` G ) P <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
| 6 | 4 5 | imbitrrdi | |- ( F ( Paths ` G ) P -> ( -. F ( SPaths ` G ) P -> F ( Cycles ` G ) P ) ) |
| 7 | 6 | orrd | |- ( F ( Paths ` G ) P -> ( F ( SPaths ` G ) P \/ F ( Cycles ` G ) P ) ) |