This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | css0.c | |- C = ( ClSubSp ` W ) |
|
| css0.z | |- .0. = ( 0g ` W ) |
||
| Assertion | css0 | |- ( W e. PreHil -> { .0. } e. C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | css0.c | |- C = ( ClSubSp ` W ) |
|
| 2 | css0.z | |- .0. = ( 0g ` W ) |
|
| 3 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 4 | eqid | |- ( ocv ` W ) = ( ocv ` W ) |
|
| 5 | 3 4 2 | ocv1 | |- ( W e. PreHil -> ( ( ocv ` W ) ` ( Base ` W ) ) = { .0. } ) |
| 6 | ssid | |- ( Base ` W ) C_ ( Base ` W ) |
|
| 7 | 3 1 4 | ocvcss | |- ( ( W e. PreHil /\ ( Base ` W ) C_ ( Base ` W ) ) -> ( ( ocv ` W ) ` ( Base ` W ) ) e. C ) |
| 8 | 6 7 | mpan2 | |- ( W e. PreHil -> ( ( ocv ` W ) ` ( Base ` W ) ) e. C ) |
| 9 | 5 8 | eqeltrrd | |- ( W e. PreHil -> { .0. } e. C ) |