This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move class substitution in and out of the predecessor class of a relation. (Contributed by ML, 25-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbpredg | |- ( A e. V -> [_ A / x ]_ Pred ( R , D , X ) = Pred ( [_ A / x ]_ R , [_ A / x ]_ D , [_ A / x ]_ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbin | |- [_ A / x ]_ ( D i^i ( `' R " { X } ) ) = ( [_ A / x ]_ D i^i [_ A / x ]_ ( `' R " { X } ) ) |
|
| 2 | csbima12 | |- [_ A / x ]_ ( `' R " { X } ) = ( [_ A / x ]_ `' R " [_ A / x ]_ { X } ) |
|
| 3 | csbcnv | |- `' [_ A / x ]_ R = [_ A / x ]_ `' R |
|
| 4 | 3 | imaeq1i | |- ( `' [_ A / x ]_ R " [_ A / x ]_ { X } ) = ( [_ A / x ]_ `' R " [_ A / x ]_ { X } ) |
| 5 | csbsng | |- ( A e. V -> [_ A / x ]_ { X } = { [_ A / x ]_ X } ) |
|
| 6 | 5 | imaeq2d | |- ( A e. V -> ( `' [_ A / x ]_ R " [_ A / x ]_ { X } ) = ( `' [_ A / x ]_ R " { [_ A / x ]_ X } ) ) |
| 7 | 4 6 | eqtr3id | |- ( A e. V -> ( [_ A / x ]_ `' R " [_ A / x ]_ { X } ) = ( `' [_ A / x ]_ R " { [_ A / x ]_ X } ) ) |
| 8 | 2 7 | eqtrid | |- ( A e. V -> [_ A / x ]_ ( `' R " { X } ) = ( `' [_ A / x ]_ R " { [_ A / x ]_ X } ) ) |
| 9 | 8 | ineq2d | |- ( A e. V -> ( [_ A / x ]_ D i^i [_ A / x ]_ ( `' R " { X } ) ) = ( [_ A / x ]_ D i^i ( `' [_ A / x ]_ R " { [_ A / x ]_ X } ) ) ) |
| 10 | 1 9 | eqtrid | |- ( A e. V -> [_ A / x ]_ ( D i^i ( `' R " { X } ) ) = ( [_ A / x ]_ D i^i ( `' [_ A / x ]_ R " { [_ A / x ]_ X } ) ) ) |
| 11 | df-pred | |- Pred ( R , D , X ) = ( D i^i ( `' R " { X } ) ) |
|
| 12 | 11 | csbeq2i | |- [_ A / x ]_ Pred ( R , D , X ) = [_ A / x ]_ ( D i^i ( `' R " { X } ) ) |
| 13 | df-pred | |- Pred ( [_ A / x ]_ R , [_ A / x ]_ D , [_ A / x ]_ X ) = ( [_ A / x ]_ D i^i ( `' [_ A / x ]_ R " { [_ A / x ]_ X } ) ) |
|
| 14 | 10 12 13 | 3eqtr4g | |- ( A e. V -> [_ A / x ]_ Pred ( R , D , X ) = Pred ( [_ A / x ]_ R , [_ A / x ]_ D , [_ A / x ]_ X ) ) |