This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move class substitution in and out of the converse of a relation. Version of csbcnvgALT without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017) (Revised by NM, 23-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbcnv | |- `' [_ A / x ]_ F = [_ A / x ]_ `' F |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbr | |- ( [. A / x ]. z F y <-> z [_ A / x ]_ F y ) |
|
| 2 | 1 | opabbii | |- { <. y , z >. | [. A / x ]. z F y } = { <. y , z >. | z [_ A / x ]_ F y } |
| 3 | csbopab | |- [_ A / x ]_ { <. y , z >. | z F y } = { <. y , z >. | [. A / x ]. z F y } |
|
| 4 | df-cnv | |- `' [_ A / x ]_ F = { <. y , z >. | z [_ A / x ]_ F y } |
|
| 5 | 2 3 4 | 3eqtr4ri | |- `' [_ A / x ]_ F = [_ A / x ]_ { <. y , z >. | z F y } |
| 6 | df-cnv | |- `' F = { <. y , z >. | z F y } |
|
| 7 | 6 | csbeq2i | |- [_ A / x ]_ `' F = [_ A / x ]_ { <. y , z >. | z F y } |
| 8 | 5 7 | eqtr4i | |- `' [_ A / x ]_ F = [_ A / x ]_ `' F |