This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006) (Proof shortened by Mario Carneiro, 11-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbnest1g | |- ( A e. V -> [_ A / x ]_ [_ B / x ]_ C = [_ [_ A / x ]_ B / x ]_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcsb1v | |- F/_ x [_ y / x ]_ C |
|
| 2 | 1 | ax-gen | |- A. y F/_ x [_ y / x ]_ C |
| 3 | csbnestgfw | |- ( ( A e. V /\ A. y F/_ x [_ y / x ]_ C ) -> [_ A / x ]_ [_ B / y ]_ [_ y / x ]_ C = [_ [_ A / x ]_ B / y ]_ [_ y / x ]_ C ) |
|
| 4 | 2 3 | mpan2 | |- ( A e. V -> [_ A / x ]_ [_ B / y ]_ [_ y / x ]_ C = [_ [_ A / x ]_ B / y ]_ [_ y / x ]_ C ) |
| 5 | csbcow | |- [_ B / y ]_ [_ y / x ]_ C = [_ B / x ]_ C |
|
| 6 | 5 | csbeq2i | |- [_ A / x ]_ [_ B / y ]_ [_ y / x ]_ C = [_ A / x ]_ [_ B / x ]_ C |
| 7 | csbcow | |- [_ [_ A / x ]_ B / y ]_ [_ y / x ]_ C = [_ [_ A / x ]_ B / x ]_ C |
|
| 8 | 4 6 7 | 3eqtr3g | |- ( A e. V -> [_ A / x ]_ [_ B / x ]_ C = [_ [_ A / x ]_ B / x ]_ C ) |