This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006) (Proof shortened by Mario Carneiro, 11-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbnest1g | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑥 ⦌ 𝐶 = ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑥 ⦌ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 | |
| 2 | 1 | ax-gen | ⊢ ∀ 𝑦 Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
| 3 | csbnestgfw | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑦 Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 5 | csbcow | ⊢ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = ⦋ 𝐵 / 𝑥 ⦌ 𝐶 | |
| 6 | 5 | csbeq2i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑥 ⦌ 𝐶 |
| 7 | csbcow | ⊢ ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑥 ⦌ 𝐶 | |
| 8 | 4 6 7 | 3eqtr3g | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑥 ⦌ 𝐶 = ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑥 ⦌ 𝐶 ) |