This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbidm | |- [_ A / x ]_ [_ A / x ]_ B = [_ A / x ]_ B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbnest1g | |- ( A e. _V -> [_ A / x ]_ [_ A / x ]_ B = [_ [_ A / x ]_ A / x ]_ B ) |
|
| 2 | csbconstg | |- ( A e. _V -> [_ A / x ]_ A = A ) |
|
| 3 | 2 | csbeq1d | |- ( A e. _V -> [_ [_ A / x ]_ A / x ]_ B = [_ A / x ]_ B ) |
| 4 | 1 3 | eqtrd | |- ( A e. _V -> [_ A / x ]_ [_ A / x ]_ B = [_ A / x ]_ B ) |
| 5 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ [_ A / x ]_ B = (/) ) |
|
| 6 | csbprc | |- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |
|
| 7 | 5 6 | eqtr4d | |- ( -. A e. _V -> [_ A / x ]_ [_ A / x ]_ B = [_ A / x ]_ B ) |
| 8 | 4 7 | pm2.61i | |- [_ A / x ]_ [_ A / x ]_ B = [_ A / x ]_ B |