This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crngocom.1 | |- G = ( 1st ` R ) |
|
| crngocom.2 | |- H = ( 2nd ` R ) |
||
| crngocom.3 | |- X = ran G |
||
| Assertion | crngocom | |- ( ( R e. CRingOps /\ A e. X /\ B e. X ) -> ( A H B ) = ( B H A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngocom.1 | |- G = ( 1st ` R ) |
|
| 2 | crngocom.2 | |- H = ( 2nd ` R ) |
|
| 3 | crngocom.3 | |- X = ran G |
|
| 4 | 1 2 3 | iscrngo2 | |- ( R e. CRingOps <-> ( R e. RingOps /\ A. x e. X A. y e. X ( x H y ) = ( y H x ) ) ) |
| 5 | 4 | simprbi | |- ( R e. CRingOps -> A. x e. X A. y e. X ( x H y ) = ( y H x ) ) |
| 6 | oveq1 | |- ( x = A -> ( x H y ) = ( A H y ) ) |
|
| 7 | oveq2 | |- ( x = A -> ( y H x ) = ( y H A ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( x = A -> ( ( x H y ) = ( y H x ) <-> ( A H y ) = ( y H A ) ) ) |
| 9 | oveq2 | |- ( y = B -> ( A H y ) = ( A H B ) ) |
|
| 10 | oveq1 | |- ( y = B -> ( y H A ) = ( B H A ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( y = B -> ( ( A H y ) = ( y H A ) <-> ( A H B ) = ( B H A ) ) ) |
| 12 | 8 11 | rspc2v | |- ( ( A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( x H y ) = ( y H x ) -> ( A H B ) = ( B H A ) ) ) |
| 13 | 5 12 | mpan9 | |- ( ( R e. CRingOps /\ ( A e. X /\ B e. X ) ) -> ( A H B ) = ( B H A ) ) |
| 14 | 13 | 3impb | |- ( ( R e. CRingOps /\ A e. X /\ B e. X ) -> ( A H B ) = ( B H A ) ) |