This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of n -times continuously differentiable functions. (Contributed by Stefan O'Rear, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cpn | |- C^n = ( s e. ~P CC |-> ( x e. NN0 |-> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccpn | |- C^n |
|
| 1 | vs | |- s |
|
| 2 | cc | |- CC |
|
| 3 | 2 | cpw | |- ~P CC |
| 4 | vx | |- x |
|
| 5 | cn0 | |- NN0 |
|
| 6 | vf | |- f |
|
| 7 | cpm | |- ^pm |
|
| 8 | 1 | cv | |- s |
| 9 | 2 8 7 | co | |- ( CC ^pm s ) |
| 10 | cdvn | |- Dn |
|
| 11 | 6 | cv | |- f |
| 12 | 8 11 10 | co | |- ( s Dn f ) |
| 13 | 4 | cv | |- x |
| 14 | 13 12 | cfv | |- ( ( s Dn f ) ` x ) |
| 15 | 11 | cdm | |- dom f |
| 16 | ccncf | |- -cn-> |
|
| 17 | 15 2 16 | co | |- ( dom f -cn-> CC ) |
| 18 | 14 17 | wcel | |- ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) |
| 19 | 18 6 9 | crab | |- { f e. ( CC ^pm s ) | ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) } |
| 20 | 4 5 19 | cmpt | |- ( x e. NN0 |-> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) } ) |
| 21 | 1 3 20 | cmpt | |- ( s e. ~P CC |-> ( x e. NN0 |-> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) } ) ) |
| 22 | 0 21 | wceq | |- C^n = ( s e. ~P CC |-> ( x e. NN0 |-> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) } ) ) |