This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of Ponnusamy p. 361. Complex version of ip0l . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | |- ., = ( .i ` W ) |
|
| cphipcj.v | |- V = ( Base ` W ) |
||
| cphip0l.z | |- .0. = ( 0g ` W ) |
||
| Assertion | cphip0l | |- ( ( W e. CPreHil /\ A e. V ) -> ( .0. ., A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | |- ., = ( .i ` W ) |
|
| 2 | cphipcj.v | |- V = ( Base ` W ) |
|
| 3 | cphip0l.z | |- .0. = ( 0g ` W ) |
|
| 4 | cphphl | |- ( W e. CPreHil -> W e. PreHil ) |
|
| 5 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 6 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 7 | 5 1 2 6 3 | ip0l | |- ( ( W e. PreHil /\ A e. V ) -> ( .0. ., A ) = ( 0g ` ( Scalar ` W ) ) ) |
| 8 | 4 7 | sylan | |- ( ( W e. CPreHil /\ A e. V ) -> ( .0. ., A ) = ( 0g ` ( Scalar ` W ) ) ) |
| 9 | cphclm | |- ( W e. CPreHil -> W e. CMod ) |
|
| 10 | 5 | clm0 | |- ( W e. CMod -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
| 11 | 9 10 | syl | |- ( W e. CPreHil -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
| 12 | 11 | adantr | |- ( ( W e. CPreHil /\ A e. V ) -> 0 = ( 0g ` ( Scalar ` W ) ) ) |
| 13 | 8 12 | eqtr4d | |- ( ( W e. CPreHil /\ A e. V ) -> ( .0. ., A ) = 0 ) |