This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of Ponnusamy p. 361. Complex version of ip0l . (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphipcj.h | ||
| cphipcj.v | |||
| cphip0l.z | |||
| Assertion | cphip0l |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphipcj.h | ||
| 2 | cphipcj.v | ||
| 3 | cphip0l.z | ||
| 4 | cphphl | ||
| 5 | eqid | ||
| 6 | eqid | ||
| 7 | 5 1 2 6 3 | ip0l | |
| 8 | 4 7 | sylan | |
| 9 | cphclm | ||
| 10 | 5 | clm0 | |
| 11 | 9 10 | syl | |
| 12 | 11 | adantr | |
| 13 | 8 12 | eqtr4d |