This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation on the converse of a restriction. (Contributed by Peter Mazsa, 27-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cnvres | |- ( B e. V -> ( B `' ( R |` A ) C <-> ( C e. A /\ C R B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | |- ( R |` A ) = ( R i^i ( A X. _V ) ) |
|
| 2 | 1 | cnveqi | |- `' ( R |` A ) = `' ( R i^i ( A X. _V ) ) |
| 3 | 2 | breqi | |- ( B `' ( R |` A ) C <-> B `' ( R i^i ( A X. _V ) ) C ) |
| 4 | elex | |- ( B e. V -> B e. _V ) |
|
| 5 | br1cnvinxp | |- ( B `' ( R i^i ( A X. _V ) ) C <-> ( ( B e. _V /\ C e. A ) /\ C R B ) ) |
|
| 6 | anass | |- ( ( ( B e. _V /\ C e. A ) /\ C R B ) <-> ( B e. _V /\ ( C e. A /\ C R B ) ) ) |
|
| 7 | 5 6 | bitri | |- ( B `' ( R i^i ( A X. _V ) ) C <-> ( B e. _V /\ ( C e. A /\ C R B ) ) ) |
| 8 | 7 | baib | |- ( B e. _V -> ( B `' ( R i^i ( A X. _V ) ) C <-> ( C e. A /\ C R B ) ) ) |
| 9 | 4 8 | syl | |- ( B e. V -> ( B `' ( R i^i ( A X. _V ) ) C <-> ( C e. A /\ C R B ) ) ) |
| 10 | 3 9 | bitrid | |- ( B e. V -> ( B `' ( R |` A ) C <-> ( C e. A /\ C R B ) ) ) |