This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed theorem form of copsex2g . (Contributed by NM, 17-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | copsex2t | |- ( ( A. x A. y ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) /\ ( A e. V /\ B e. W ) ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 | |- F/ x A. x A. y ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
| 2 | nfe1 | |- F/ x E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) |
|
| 3 | nfv | |- F/ x ps |
|
| 4 | 2 3 | nfbi | |- F/ x ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) |
| 5 | nfa2 | |- F/ y A. x A. y ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) |
|
| 6 | nfe1 | |- F/ y E. y ( <. A , B >. = <. x , y >. /\ ph ) |
|
| 7 | 6 | nfex | |- F/ y E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) |
| 8 | nfv | |- F/ y ps |
|
| 9 | 7 8 | nfbi | |- F/ y ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) |
| 10 | opeq12 | |- ( ( x = A /\ y = B ) -> <. x , y >. = <. A , B >. ) |
|
| 11 | copsexgw | |- ( <. A , B >. = <. x , y >. -> ( ph <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) ) ) |
|
| 12 | 11 | eqcoms | |- ( <. x , y >. = <. A , B >. -> ( ph <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) ) ) |
| 13 | 10 12 | syl | |- ( ( x = A /\ y = B ) -> ( ph <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) ) ) |
| 14 | 13 | adantl | |- ( ( A. x A. y ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) /\ ( x = A /\ y = B ) ) -> ( ph <-> E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) ) ) |
| 15 | 2sp | |- ( A. x A. y ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) -> ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) ) |
|
| 16 | 15 | imp | |- ( ( A. x A. y ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) /\ ( x = A /\ y = B ) ) -> ( ph <-> ps ) ) |
| 17 | 14 16 | bitr3d | |- ( ( A. x A. y ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) /\ ( x = A /\ y = B ) ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) ) |
| 18 | 17 | ex | |- ( A. x A. y ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) -> ( ( x = A /\ y = B ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) ) ) |
| 19 | 5 9 18 | exlimd | |- ( A. x A. y ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) -> ( E. y ( x = A /\ y = B ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) ) ) |
| 20 | 1 4 19 | exlimd | |- ( A. x A. y ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) -> ( E. x E. y ( x = A /\ y = B ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) ) ) |
| 21 | elisset | |- ( A e. V -> E. x x = A ) |
|
| 22 | elisset | |- ( B e. W -> E. y y = B ) |
|
| 23 | 21 22 | anim12i | |- ( ( A e. V /\ B e. W ) -> ( E. x x = A /\ E. y y = B ) ) |
| 24 | exdistrv | |- ( E. x E. y ( x = A /\ y = B ) <-> ( E. x x = A /\ E. y y = B ) ) |
|
| 25 | 23 24 | sylibr | |- ( ( A e. V /\ B e. W ) -> E. x E. y ( x = A /\ y = B ) ) |
| 26 | 20 25 | impel | |- ( ( A. x A. y ( ( x = A /\ y = B ) -> ( ph <-> ps ) ) /\ ( A e. V /\ B e. W ) ) -> ( E. x E. y ( <. A , B >. = <. x , y >. /\ ph ) <-> ps ) ) |