This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of copsexg with a disjoint variable condition, which does not require ax-13 . (Contributed by GG, 26-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | copsexgw | |- ( A = <. x , y >. -> ( ph <-> E. x E. y ( A = <. x , y >. /\ ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | vex | |- y e. _V |
|
| 3 | 1 2 | eqvinop | |- ( A = <. x , y >. <-> E. z E. w ( A = <. z , w >. /\ <. z , w >. = <. x , y >. ) ) |
| 4 | 19.8a | |- ( ( <. z , w >. = <. x , y >. /\ ph ) -> E. y ( <. z , w >. = <. x , y >. /\ ph ) ) |
|
| 5 | 4 | 19.8ad | |- ( ( <. z , w >. = <. x , y >. /\ ph ) -> E. x E. y ( <. z , w >. = <. x , y >. /\ ph ) ) |
| 6 | 5 | ex | |- ( <. z , w >. = <. x , y >. -> ( ph -> E. x E. y ( <. z , w >. = <. x , y >. /\ ph ) ) ) |
| 7 | vex | |- z e. _V |
|
| 8 | vex | |- w e. _V |
|
| 9 | 7 8 | opth | |- ( <. z , w >. = <. x , y >. <-> ( z = x /\ w = y ) ) |
| 10 | 9 | anbi1i | |- ( ( <. z , w >. = <. x , y >. /\ ph ) <-> ( ( z = x /\ w = y ) /\ ph ) ) |
| 11 | 10 | 2exbii | |- ( E. x E. y ( <. z , w >. = <. x , y >. /\ ph ) <-> E. x E. y ( ( z = x /\ w = y ) /\ ph ) ) |
| 12 | nfe1 | |- F/ x E. x ( z = x /\ E. y ( w = y /\ ph ) ) |
|
| 13 | 19.8a | |- ( ( w = y /\ ph ) -> E. y ( w = y /\ ph ) ) |
|
| 14 | 13 | anim2i | |- ( ( z = x /\ ( w = y /\ ph ) ) -> ( z = x /\ E. y ( w = y /\ ph ) ) ) |
| 15 | 14 | anassrs | |- ( ( ( z = x /\ w = y ) /\ ph ) -> ( z = x /\ E. y ( w = y /\ ph ) ) ) |
| 16 | 15 | eximi | |- ( E. y ( ( z = x /\ w = y ) /\ ph ) -> E. y ( z = x /\ E. y ( w = y /\ ph ) ) ) |
| 17 | biidd | |- ( A. y y = x -> ( ( z = x /\ E. y ( w = y /\ ph ) ) <-> ( z = x /\ E. y ( w = y /\ ph ) ) ) ) |
|
| 18 | 17 | drex1v | |- ( A. y y = x -> ( E. y ( z = x /\ E. y ( w = y /\ ph ) ) <-> E. x ( z = x /\ E. y ( w = y /\ ph ) ) ) ) |
| 19 | 16 18 | imbitrid | |- ( A. y y = x -> ( E. y ( ( z = x /\ w = y ) /\ ph ) -> E. x ( z = x /\ E. y ( w = y /\ ph ) ) ) ) |
| 20 | anass | |- ( ( ( z = x /\ w = y ) /\ ph ) <-> ( z = x /\ ( w = y /\ ph ) ) ) |
|
| 21 | 20 | exbii | |- ( E. y ( ( z = x /\ w = y ) /\ ph ) <-> E. y ( z = x /\ ( w = y /\ ph ) ) ) |
| 22 | 19.40 | |- ( E. y ( z = x /\ ( w = y /\ ph ) ) -> ( E. y z = x /\ E. y ( w = y /\ ph ) ) ) |
|
| 23 | nfvd | |- ( -. A. y y = x -> F/ y z = x ) |
|
| 24 | 23 | 19.9d | |- ( -. A. y y = x -> ( E. y z = x -> z = x ) ) |
| 25 | 24 | anim1d | |- ( -. A. y y = x -> ( ( E. y z = x /\ E. y ( w = y /\ ph ) ) -> ( z = x /\ E. y ( w = y /\ ph ) ) ) ) |
| 26 | 22 25 | syl5 | |- ( -. A. y y = x -> ( E. y ( z = x /\ ( w = y /\ ph ) ) -> ( z = x /\ E. y ( w = y /\ ph ) ) ) ) |
| 27 | 21 26 | biimtrid | |- ( -. A. y y = x -> ( E. y ( ( z = x /\ w = y ) /\ ph ) -> ( z = x /\ E. y ( w = y /\ ph ) ) ) ) |
| 28 | 19.8a | |- ( ( z = x /\ E. y ( w = y /\ ph ) ) -> E. x ( z = x /\ E. y ( w = y /\ ph ) ) ) |
|
| 29 | 27 28 | syl6 | |- ( -. A. y y = x -> ( E. y ( ( z = x /\ w = y ) /\ ph ) -> E. x ( z = x /\ E. y ( w = y /\ ph ) ) ) ) |
| 30 | 19 29 | pm2.61i | |- ( E. y ( ( z = x /\ w = y ) /\ ph ) -> E. x ( z = x /\ E. y ( w = y /\ ph ) ) ) |
| 31 | 12 30 | exlimi | |- ( E. x E. y ( ( z = x /\ w = y ) /\ ph ) -> E. x ( z = x /\ E. y ( w = y /\ ph ) ) ) |
| 32 | euequ | |- E! x x = z |
|
| 33 | equcom | |- ( x = z <-> z = x ) |
|
| 34 | 33 | eubii | |- ( E! x x = z <-> E! x z = x ) |
| 35 | 32 34 | mpbi | |- E! x z = x |
| 36 | eupick | |- ( ( E! x z = x /\ E. x ( z = x /\ E. y ( w = y /\ ph ) ) ) -> ( z = x -> E. y ( w = y /\ ph ) ) ) |
|
| 37 | 35 36 | mpan | |- ( E. x ( z = x /\ E. y ( w = y /\ ph ) ) -> ( z = x -> E. y ( w = y /\ ph ) ) ) |
| 38 | 37 | com12 | |- ( z = x -> ( E. x ( z = x /\ E. y ( w = y /\ ph ) ) -> E. y ( w = y /\ ph ) ) ) |
| 39 | euequ | |- E! y y = w |
|
| 40 | equcom | |- ( y = w <-> w = y ) |
|
| 41 | 40 | eubii | |- ( E! y y = w <-> E! y w = y ) |
| 42 | 39 41 | mpbi | |- E! y w = y |
| 43 | eupick | |- ( ( E! y w = y /\ E. y ( w = y /\ ph ) ) -> ( w = y -> ph ) ) |
|
| 44 | 42 43 | mpan | |- ( E. y ( w = y /\ ph ) -> ( w = y -> ph ) ) |
| 45 | 44 | com12 | |- ( w = y -> ( E. y ( w = y /\ ph ) -> ph ) ) |
| 46 | 38 45 | sylan9 | |- ( ( z = x /\ w = y ) -> ( E. x ( z = x /\ E. y ( w = y /\ ph ) ) -> ph ) ) |
| 47 | 31 46 | syl5 | |- ( ( z = x /\ w = y ) -> ( E. x E. y ( ( z = x /\ w = y ) /\ ph ) -> ph ) ) |
| 48 | 11 47 | biimtrid | |- ( ( z = x /\ w = y ) -> ( E. x E. y ( <. z , w >. = <. x , y >. /\ ph ) -> ph ) ) |
| 49 | 9 48 | sylbi | |- ( <. z , w >. = <. x , y >. -> ( E. x E. y ( <. z , w >. = <. x , y >. /\ ph ) -> ph ) ) |
| 50 | 6 49 | impbid | |- ( <. z , w >. = <. x , y >. -> ( ph <-> E. x E. y ( <. z , w >. = <. x , y >. /\ ph ) ) ) |
| 51 | eqeq1 | |- ( A = <. z , w >. -> ( A = <. x , y >. <-> <. z , w >. = <. x , y >. ) ) |
|
| 52 | 51 | anbi1d | |- ( A = <. z , w >. -> ( ( A = <. x , y >. /\ ph ) <-> ( <. z , w >. = <. x , y >. /\ ph ) ) ) |
| 53 | 52 | 2exbidv | |- ( A = <. z , w >. -> ( E. x E. y ( A = <. x , y >. /\ ph ) <-> E. x E. y ( <. z , w >. = <. x , y >. /\ ph ) ) ) |
| 54 | 53 | bibi2d | |- ( A = <. z , w >. -> ( ( ph <-> E. x E. y ( A = <. x , y >. /\ ph ) ) <-> ( ph <-> E. x E. y ( <. z , w >. = <. x , y >. /\ ph ) ) ) ) |
| 55 | 51 54 | imbi12d | |- ( A = <. z , w >. -> ( ( A = <. x , y >. -> ( ph <-> E. x E. y ( A = <. x , y >. /\ ph ) ) ) <-> ( <. z , w >. = <. x , y >. -> ( ph <-> E. x E. y ( <. z , w >. = <. x , y >. /\ ph ) ) ) ) ) |
| 56 | 50 55 | mpbiri | |- ( A = <. z , w >. -> ( A = <. x , y >. -> ( ph <-> E. x E. y ( A = <. x , y >. /\ ph ) ) ) ) |
| 57 | 56 | adantr | |- ( ( A = <. z , w >. /\ <. z , w >. = <. x , y >. ) -> ( A = <. x , y >. -> ( ph <-> E. x E. y ( A = <. x , y >. /\ ph ) ) ) ) |
| 58 | 57 | exlimivv | |- ( E. z E. w ( A = <. z , w >. /\ <. z , w >. = <. x , y >. ) -> ( A = <. x , y >. -> ( ph <-> E. x E. y ( A = <. x , y >. /\ ph ) ) ) ) |
| 59 | 3 58 | sylbi | |- ( A = <. x , y >. -> ( A = <. x , y >. -> ( ph <-> E. x E. y ( A = <. x , y >. /\ ph ) ) ) ) |
| 60 | 59 | pm2.43i | |- ( A = <. x , y >. -> ( ph <-> E. x E. y ( A = <. x , y >. /\ ph ) ) ) |