This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | comfffval2.o | ⊢ 𝑂 = ( compf ‘ 𝐶 ) | |
| comfffval2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| comfffval2.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | ||
| comfffval2.x | ⊢ · = ( comp ‘ 𝐶 ) | ||
| comffval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| comffval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| comffval2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | comffval2 | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comfffval2.o | ⊢ 𝑂 = ( compf ‘ 𝐶 ) | |
| 2 | comfffval2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | comfffval2.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | |
| 4 | comfffval2.x | ⊢ · = ( comp ‘ 𝐶 ) | |
| 5 | comffval2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | comffval2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | comffval2.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 9 | 1 2 8 4 5 6 7 | comffval | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) , 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ) |
| 10 | 3 2 8 6 7 | homfval | ⊢ ( 𝜑 → ( 𝑌 𝐻 𝑍 ) = ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 11 | 3 2 8 5 6 | homfval | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 12 | eqidd | ⊢ ( 𝜑 → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) = ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) | |
| 13 | 10 11 12 | mpoeq123dv | ⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) = ( 𝑔 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) , 𝑓 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ) |
| 14 | 9 13 | eqtr4d | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 𝑂 𝑍 ) = ( 𝑔 ∈ ( 𝑌 𝐻 𝑍 ) , 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ↦ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝑓 ) ) ) |