This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If " F is a section of G " in a category of small categories (in a universe), then the object part of F is injective, and the object part of G is surjective. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofidvala.i | |- I = ( idFunc ` D ) |
|
| cofidvala.b | |- B = ( Base ` D ) |
||
| cofidvala.f | |- ( ph -> F e. ( D Func E ) ) |
||
| cofidvala.g | |- ( ph -> G e. ( E Func D ) ) |
||
| cofidvala.o | |- ( ph -> ( G o.func F ) = I ) |
||
| cofidf1a.c | |- C = ( Base ` E ) |
||
| Assertion | cofidf1a | |- ( ph -> ( ( 1st ` F ) : B -1-1-> C /\ ( 1st ` G ) : C -onto-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidvala.i | |- I = ( idFunc ` D ) |
|
| 2 | cofidvala.b | |- B = ( Base ` D ) |
|
| 3 | cofidvala.f | |- ( ph -> F e. ( D Func E ) ) |
|
| 4 | cofidvala.g | |- ( ph -> G e. ( E Func D ) ) |
|
| 5 | cofidvala.o | |- ( ph -> ( G o.func F ) = I ) |
|
| 6 | cofidf1a.c | |- C = ( Base ` E ) |
|
| 7 | 3 | func1st2nd | |- ( ph -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) ) |
| 8 | 2 6 7 | funcf1 | |- ( ph -> ( 1st ` F ) : B --> C ) |
| 9 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 10 | 1 2 3 4 5 9 | cofidvala | |- ( ph -> ( ( ( 1st ` G ) o. ( 1st ` F ) ) = ( _I |` B ) /\ ( x e. B , y e. B |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) = ( z e. ( B X. B ) |-> ( _I |` ( ( Hom ` D ) ` z ) ) ) ) ) |
| 11 | 10 | simpld | |- ( ph -> ( ( 1st ` G ) o. ( 1st ` F ) ) = ( _I |` B ) ) |
| 12 | fcof1 | |- ( ( ( 1st ` F ) : B --> C /\ ( ( 1st ` G ) o. ( 1st ` F ) ) = ( _I |` B ) ) -> ( 1st ` F ) : B -1-1-> C ) |
|
| 13 | 8 11 12 | syl2anc | |- ( ph -> ( 1st ` F ) : B -1-1-> C ) |
| 14 | 4 | func1st2nd | |- ( ph -> ( 1st ` G ) ( E Func D ) ( 2nd ` G ) ) |
| 15 | 6 2 14 | funcf1 | |- ( ph -> ( 1st ` G ) : C --> B ) |
| 16 | fcofo | |- ( ( ( 1st ` G ) : C --> B /\ ( 1st ` F ) : B --> C /\ ( ( 1st ` G ) o. ( 1st ` F ) ) = ( _I |` B ) ) -> ( 1st ` G ) : C -onto-> B ) |
|
| 17 | 15 8 11 16 | syl3anc | |- ( ph -> ( 1st ` G ) : C -onto-> B ) |
| 18 | 13 17 | jca | |- ( ph -> ( ( 1st ` F ) : B -1-1-> C /\ ( 1st ` G ) : C -onto-> B ) ) |