This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " F is a section of G " in a category of small categories (in a universe); expressed explicitly. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofidvala.i | |- I = ( idFunc ` D ) |
|
| cofidvala.b | |- B = ( Base ` D ) |
||
| cofidvala.f | |- ( ph -> F e. ( D Func E ) ) |
||
| cofidvala.g | |- ( ph -> G e. ( E Func D ) ) |
||
| cofidvala.o | |- ( ph -> ( G o.func F ) = I ) |
||
| cofidvala.h | |- H = ( Hom ` D ) |
||
| Assertion | cofidvala | |- ( ph -> ( ( ( 1st ` G ) o. ( 1st ` F ) ) = ( _I |` B ) /\ ( x e. B , y e. B |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) = ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofidvala.i | |- I = ( idFunc ` D ) |
|
| 2 | cofidvala.b | |- B = ( Base ` D ) |
|
| 3 | cofidvala.f | |- ( ph -> F e. ( D Func E ) ) |
|
| 4 | cofidvala.g | |- ( ph -> G e. ( E Func D ) ) |
|
| 5 | cofidvala.o | |- ( ph -> ( G o.func F ) = I ) |
|
| 6 | cofidvala.h | |- H = ( Hom ` D ) |
|
| 7 | 2 3 4 | cofuval | |- ( ph -> ( G o.func F ) = <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. B , y e. B |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. ) |
| 8 | 3 | func1st2nd | |- ( ph -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) ) |
| 9 | 8 | funcrcl2 | |- ( ph -> D e. Cat ) |
| 10 | 1 2 9 6 | idfuval | |- ( ph -> I = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
| 11 | 5 7 10 | 3eqtr3d | |- ( ph -> <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. B , y e. B |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. ) |
| 12 | 2 | fvexi | |- B e. _V |
| 13 | resiexg | |- ( B e. _V -> ( _I |` B ) e. _V ) |
|
| 14 | 12 13 | ax-mp | |- ( _I |` B ) e. _V |
| 15 | 12 12 | xpex | |- ( B X. B ) e. _V |
| 16 | 15 | mptex | |- ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) e. _V |
| 17 | 14 16 | opth2 | |- ( <. ( ( 1st ` G ) o. ( 1st ` F ) ) , ( x e. B , y e. B |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) >. = <. ( _I |` B ) , ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) >. <-> ( ( ( 1st ` G ) o. ( 1st ` F ) ) = ( _I |` B ) /\ ( x e. B , y e. B |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) = ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) ) ) |
| 18 | 11 17 | sylib | |- ( ph -> ( ( ( 1st ` G ) o. ( 1st ` F ) ) = ( _I |` B ) /\ ( x e. B , y e. B |-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) = ( z e. ( B X. B ) |-> ( _I |` ( H ` z ) ) ) ) ) |