This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the morphism part of ( G o.func F ) = I explicitly. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofid1a.i | |- I = ( idFunc ` D ) |
|
| cofid1a.b | |- B = ( Base ` D ) |
||
| cofid1a.x | |- ( ph -> X e. B ) |
||
| cofid1.f | |- ( ph -> F ( D Func E ) G ) |
||
| cofid1.k | |- ( ph -> K ( E Func D ) L ) |
||
| cofid1.o | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
||
| cofid2.y | |- ( ph -> Y e. B ) |
||
| cofid2.h | |- H = ( Hom ` D ) |
||
| cofid2.r | |- ( ph -> R e. ( X H Y ) ) |
||
| Assertion | cofid2 | |- ( ph -> ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` R ) ) = R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofid1a.i | |- I = ( idFunc ` D ) |
|
| 2 | cofid1a.b | |- B = ( Base ` D ) |
|
| 3 | cofid1a.x | |- ( ph -> X e. B ) |
|
| 4 | cofid1.f | |- ( ph -> F ( D Func E ) G ) |
|
| 5 | cofid1.k | |- ( ph -> K ( E Func D ) L ) |
|
| 6 | cofid1.o | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
|
| 7 | cofid2.y | |- ( ph -> Y e. B ) |
|
| 8 | cofid2.h | |- H = ( Hom ` D ) |
|
| 9 | cofid2.r | |- ( ph -> R e. ( X H Y ) ) |
|
| 10 | 5 | func2nd | |- ( ph -> ( 2nd ` <. K , L >. ) = L ) |
| 11 | 4 | func1st | |- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 12 | 11 | fveq1d | |- ( ph -> ( ( 1st ` <. F , G >. ) ` X ) = ( F ` X ) ) |
| 13 | 11 | fveq1d | |- ( ph -> ( ( 1st ` <. F , G >. ) ` Y ) = ( F ` Y ) ) |
| 14 | 10 12 13 | oveq123d | |- ( ph -> ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) = ( ( F ` X ) L ( F ` Y ) ) ) |
| 15 | 4 | func2nd | |- ( ph -> ( 2nd ` <. F , G >. ) = G ) |
| 16 | 15 | oveqd | |- ( ph -> ( X ( 2nd ` <. F , G >. ) Y ) = ( X G Y ) ) |
| 17 | 16 | fveq1d | |- ( ph -> ( ( X ( 2nd ` <. F , G >. ) Y ) ` R ) = ( ( X G Y ) ` R ) ) |
| 18 | 14 17 | fveq12d | |- ( ph -> ( ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) ` ( ( X ( 2nd ` <. F , G >. ) Y ) ` R ) ) = ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` R ) ) ) |
| 19 | df-br | |- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
|
| 20 | 4 19 | sylib | |- ( ph -> <. F , G >. e. ( D Func E ) ) |
| 21 | df-br | |- ( K ( E Func D ) L <-> <. K , L >. e. ( E Func D ) ) |
|
| 22 | 5 21 | sylib | |- ( ph -> <. K , L >. e. ( E Func D ) ) |
| 23 | 1 2 3 20 22 6 7 8 9 | cofid2a | |- ( ph -> ( ( ( ( 1st ` <. F , G >. ) ` X ) ( 2nd ` <. K , L >. ) ( ( 1st ` <. F , G >. ) ` Y ) ) ` ( ( X ( 2nd ` <. F , G >. ) Y ) ` R ) ) = R ) |
| 24 | 18 23 | eqtr3d | |- ( ph -> ( ( ( F ` X ) L ( F ` Y ) ) ` ( ( X G Y ) ` R ) ) = R ) |