This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the morphism part of ( G o.func F ) = I explicitly. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofid1a.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| cofid1a.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| cofid1a.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| cofid1.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| cofid1.k | ⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) | ||
| cofid1.o | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) | ||
| cofid2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| cofid2.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| cofid2.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| Assertion | cofid2 | ⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofid1a.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| 2 | cofid1a.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 3 | cofid1a.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | cofid1.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 5 | cofid1.k | ⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) | |
| 6 | cofid1.o | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) | |
| 7 | cofid2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | cofid2.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 9 | cofid2.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 10 | 5 | func2nd | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐿 ) |
| 11 | 4 | func1st | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 12 | 11 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 13 | 11 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 14 | 10 12 13 | oveq123d | ⊢ ( 𝜑 → ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ) |
| 15 | 4 | func2nd | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 16 | 15 | oveqd | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) = ( 𝑋 𝐺 𝑌 ) ) |
| 17 | 16 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) ‘ 𝑅 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) |
| 18 | 14 17 | fveq12d | ⊢ ( 𝜑 → ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) ‘ ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) ‘ 𝑅 ) ) = ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) ) |
| 19 | df-br | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 20 | 4 19 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 21 | df-br | ⊢ ( 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐸 Func 𝐷 ) ) | |
| 22 | 5 21 | sylib | ⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐸 Func 𝐷 ) ) |
| 23 | 1 2 3 20 22 6 7 8 9 | cofid2a | ⊢ ( 𝜑 → ( ( ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ( 2nd ‘ 〈 𝐾 , 𝐿 〉 ) ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑌 ) ) ‘ ( ( 𝑋 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑌 ) ‘ 𝑅 ) ) = 𝑅 ) |
| 24 | 18 23 | eqtr3d | ⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝑋 ) 𝐿 ( 𝐹 ‘ 𝑌 ) ) ‘ ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ) = 𝑅 ) |