This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the morphism part of ( G o.func F ) = I explicitly. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofid1a.i | |- I = ( idFunc ` D ) |
|
| cofid1a.b | |- B = ( Base ` D ) |
||
| cofid1a.x | |- ( ph -> X e. B ) |
||
| cofid1a.f | |- ( ph -> F e. ( D Func E ) ) |
||
| cofid1a.g | |- ( ph -> G e. ( E Func D ) ) |
||
| cofid1a.o | |- ( ph -> ( G o.func F ) = I ) |
||
| cofid2a.y | |- ( ph -> Y e. B ) |
||
| cofid2a.h | |- H = ( Hom ` D ) |
||
| cofid2a.r | |- ( ph -> R e. ( X H Y ) ) |
||
| Assertion | cofid2a | |- ( ph -> ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) ` ( ( X ( 2nd ` F ) Y ) ` R ) ) = R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofid1a.i | |- I = ( idFunc ` D ) |
|
| 2 | cofid1a.b | |- B = ( Base ` D ) |
|
| 3 | cofid1a.x | |- ( ph -> X e. B ) |
|
| 4 | cofid1a.f | |- ( ph -> F e. ( D Func E ) ) |
|
| 5 | cofid1a.g | |- ( ph -> G e. ( E Func D ) ) |
|
| 6 | cofid1a.o | |- ( ph -> ( G o.func F ) = I ) |
|
| 7 | cofid2a.y | |- ( ph -> Y e. B ) |
|
| 8 | cofid2a.h | |- H = ( Hom ` D ) |
|
| 9 | cofid2a.r | |- ( ph -> R e. ( X H Y ) ) |
|
| 10 | 6 | fveq2d | |- ( ph -> ( 2nd ` ( G o.func F ) ) = ( 2nd ` I ) ) |
| 11 | 10 | oveqd | |- ( ph -> ( X ( 2nd ` ( G o.func F ) ) Y ) = ( X ( 2nd ` I ) Y ) ) |
| 12 | 11 | fveq1d | |- ( ph -> ( ( X ( 2nd ` ( G o.func F ) ) Y ) ` R ) = ( ( X ( 2nd ` I ) Y ) ` R ) ) |
| 13 | 2 4 5 3 7 8 9 | cofu2 | |- ( ph -> ( ( X ( 2nd ` ( G o.func F ) ) Y ) ` R ) = ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) ` ( ( X ( 2nd ` F ) Y ) ` R ) ) ) |
| 14 | 4 | func1st2nd | |- ( ph -> ( 1st ` F ) ( D Func E ) ( 2nd ` F ) ) |
| 15 | 14 | funcrcl2 | |- ( ph -> D e. Cat ) |
| 16 | 1 2 15 8 3 7 9 | idfu2 | |- ( ph -> ( ( X ( 2nd ` I ) Y ) ` R ) = R ) |
| 17 | 12 13 16 | 3eqtr3d | |- ( ph -> ( ( ( ( 1st ` F ) ` X ) ( 2nd ` G ) ( ( 1st ` F ) ` Y ) ) ` ( ( X ( 2nd ` F ) Y ) ` R ) ) = R ) |