This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the object part of ( G o.func F ) = I explicitly. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofid1a.i | |- I = ( idFunc ` D ) |
|
| cofid1a.b | |- B = ( Base ` D ) |
||
| cofid1a.x | |- ( ph -> X e. B ) |
||
| cofid1.f | |- ( ph -> F ( D Func E ) G ) |
||
| cofid1.k | |- ( ph -> K ( E Func D ) L ) |
||
| cofid1.o | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
||
| Assertion | cofid1 | |- ( ph -> ( K ` ( F ` X ) ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofid1a.i | |- I = ( idFunc ` D ) |
|
| 2 | cofid1a.b | |- B = ( Base ` D ) |
|
| 3 | cofid1a.x | |- ( ph -> X e. B ) |
|
| 4 | cofid1.f | |- ( ph -> F ( D Func E ) G ) |
|
| 5 | cofid1.k | |- ( ph -> K ( E Func D ) L ) |
|
| 6 | cofid1.o | |- ( ph -> ( <. K , L >. o.func <. F , G >. ) = I ) |
|
| 7 | 5 | func1st | |- ( ph -> ( 1st ` <. K , L >. ) = K ) |
| 8 | 4 | func1st | |- ( ph -> ( 1st ` <. F , G >. ) = F ) |
| 9 | 8 | fveq1d | |- ( ph -> ( ( 1st ` <. F , G >. ) ` X ) = ( F ` X ) ) |
| 10 | 7 9 | fveq12d | |- ( ph -> ( ( 1st ` <. K , L >. ) ` ( ( 1st ` <. F , G >. ) ` X ) ) = ( K ` ( F ` X ) ) ) |
| 11 | df-br | |- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
|
| 12 | 4 11 | sylib | |- ( ph -> <. F , G >. e. ( D Func E ) ) |
| 13 | df-br | |- ( K ( E Func D ) L <-> <. K , L >. e. ( E Func D ) ) |
|
| 14 | 5 13 | sylib | |- ( ph -> <. K , L >. e. ( E Func D ) ) |
| 15 | 1 2 3 12 14 6 | cofid1a | |- ( ph -> ( ( 1st ` <. K , L >. ) ` ( ( 1st ` <. F , G >. ) ` X ) ) = X ) |
| 16 | 10 15 | eqtr3d | |- ( ph -> ( K ` ( F ` X ) ) = X ) |