This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the object part of ( G o.func F ) = I explicitly. (Contributed by Zhi Wang, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofid1a.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| cofid1a.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| cofid1a.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| cofid1.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| cofid1.k | ⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) | ||
| cofid1.o | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) | ||
| Assertion | cofid1 | ⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofid1a.i | ⊢ 𝐼 = ( idfunc ‘ 𝐷 ) | |
| 2 | cofid1a.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 3 | cofid1a.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 4 | cofid1.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 5 | cofid1.k | ⊢ ( 𝜑 → 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ) | |
| 6 | cofid1.o | ⊢ ( 𝜑 → ( 〈 𝐾 , 𝐿 〉 ∘func 〈 𝐹 , 𝐺 〉 ) = 𝐼 ) | |
| 7 | 5 | func1st | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) = 𝐾 ) |
| 8 | 4 | func1st | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 9 | 8 | fveq1d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 10 | 7 9 | fveq12d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) ‘ ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ) = ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 11 | df-br | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 12 | 4 11 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 13 | df-br | ⊢ ( 𝐾 ( 𝐸 Func 𝐷 ) 𝐿 ↔ 〈 𝐾 , 𝐿 〉 ∈ ( 𝐸 Func 𝐷 ) ) | |
| 14 | 5 13 | sylib | ⊢ ( 𝜑 → 〈 𝐾 , 𝐿 〉 ∈ ( 𝐸 Func 𝐷 ) ) |
| 15 | 1 2 3 12 14 6 | cofid1a | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐾 , 𝐿 〉 ) ‘ ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑋 ) ) = 𝑋 ) |
| 16 | 10 15 | eqtr3d | ⊢ ( 𝜑 → ( 𝐾 ‘ ( 𝐹 ‘ 𝑋 ) ) = 𝑋 ) |