This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An injection is left-cancelable. (Contributed by FL, 2-Aug-2009) (Revised by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cocan1 | |- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> ( ( F o. H ) = ( F o. K ) <-> H = K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvco3 | |- ( ( H : A --> B /\ x e. A ) -> ( ( F o. H ) ` x ) = ( F ` ( H ` x ) ) ) |
|
| 2 | 1 | 3ad2antl2 | |- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> ( ( F o. H ) ` x ) = ( F ` ( H ` x ) ) ) |
| 3 | fvco3 | |- ( ( K : A --> B /\ x e. A ) -> ( ( F o. K ) ` x ) = ( F ` ( K ` x ) ) ) |
|
| 4 | 3 | 3ad2antl3 | |- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> ( ( F o. K ) ` x ) = ( F ` ( K ` x ) ) ) |
| 5 | 2 4 | eqeq12d | |- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> ( ( ( F o. H ) ` x ) = ( ( F o. K ) ` x ) <-> ( F ` ( H ` x ) ) = ( F ` ( K ` x ) ) ) ) |
| 6 | simpl1 | |- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> F : B -1-1-> C ) |
|
| 7 | ffvelcdm | |- ( ( H : A --> B /\ x e. A ) -> ( H ` x ) e. B ) |
|
| 8 | 7 | 3ad2antl2 | |- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> ( H ` x ) e. B ) |
| 9 | ffvelcdm | |- ( ( K : A --> B /\ x e. A ) -> ( K ` x ) e. B ) |
|
| 10 | 9 | 3ad2antl3 | |- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> ( K ` x ) e. B ) |
| 11 | f1fveq | |- ( ( F : B -1-1-> C /\ ( ( H ` x ) e. B /\ ( K ` x ) e. B ) ) -> ( ( F ` ( H ` x ) ) = ( F ` ( K ` x ) ) <-> ( H ` x ) = ( K ` x ) ) ) |
|
| 12 | 6 8 10 11 | syl12anc | |- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> ( ( F ` ( H ` x ) ) = ( F ` ( K ` x ) ) <-> ( H ` x ) = ( K ` x ) ) ) |
| 13 | 5 12 | bitrd | |- ( ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) /\ x e. A ) -> ( ( ( F o. H ) ` x ) = ( ( F o. K ) ` x ) <-> ( H ` x ) = ( K ` x ) ) ) |
| 14 | 13 | ralbidva | |- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> ( A. x e. A ( ( F o. H ) ` x ) = ( ( F o. K ) ` x ) <-> A. x e. A ( H ` x ) = ( K ` x ) ) ) |
| 15 | f1f | |- ( F : B -1-1-> C -> F : B --> C ) |
|
| 16 | 15 | 3ad2ant1 | |- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> F : B --> C ) |
| 17 | 16 | ffnd | |- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> F Fn B ) |
| 18 | simp2 | |- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> H : A --> B ) |
|
| 19 | fnfco | |- ( ( F Fn B /\ H : A --> B ) -> ( F o. H ) Fn A ) |
|
| 20 | 17 18 19 | syl2anc | |- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> ( F o. H ) Fn A ) |
| 21 | simp3 | |- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> K : A --> B ) |
|
| 22 | fnfco | |- ( ( F Fn B /\ K : A --> B ) -> ( F o. K ) Fn A ) |
|
| 23 | 17 21 22 | syl2anc | |- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> ( F o. K ) Fn A ) |
| 24 | eqfnfv | |- ( ( ( F o. H ) Fn A /\ ( F o. K ) Fn A ) -> ( ( F o. H ) = ( F o. K ) <-> A. x e. A ( ( F o. H ) ` x ) = ( ( F o. K ) ` x ) ) ) |
|
| 25 | 20 23 24 | syl2anc | |- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> ( ( F o. H ) = ( F o. K ) <-> A. x e. A ( ( F o. H ) ` x ) = ( ( F o. K ) ` x ) ) ) |
| 26 | 18 | ffnd | |- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> H Fn A ) |
| 27 | 21 | ffnd | |- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> K Fn A ) |
| 28 | eqfnfv | |- ( ( H Fn A /\ K Fn A ) -> ( H = K <-> A. x e. A ( H ` x ) = ( K ` x ) ) ) |
|
| 29 | 26 27 28 | syl2anc | |- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> ( H = K <-> A. x e. A ( H ` x ) = ( K ` x ) ) ) |
| 30 | 14 25 29 | 3bitr4d | |- ( ( F : B -1-1-> C /\ H : A --> B /\ K : A --> B ) -> ( ( F o. H ) = ( F o. K ) <-> H = K ) ) |