This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvdif | |- `' ( A \ B ) = ( `' A \ `' B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' ( A \ B ) |
|
| 2 | difss | |- ( `' A \ `' B ) C_ `' A |
|
| 3 | relcnv | |- Rel `' A |
|
| 4 | relss | |- ( ( `' A \ `' B ) C_ `' A -> ( Rel `' A -> Rel ( `' A \ `' B ) ) ) |
|
| 5 | 2 3 4 | mp2 | |- Rel ( `' A \ `' B ) |
| 6 | eldif | |- ( <. y , x >. e. ( A \ B ) <-> ( <. y , x >. e. A /\ -. <. y , x >. e. B ) ) |
|
| 7 | vex | |- x e. _V |
|
| 8 | vex | |- y e. _V |
|
| 9 | 7 8 | opelcnv | |- ( <. x , y >. e. `' ( A \ B ) <-> <. y , x >. e. ( A \ B ) ) |
| 10 | eldif | |- ( <. x , y >. e. ( `' A \ `' B ) <-> ( <. x , y >. e. `' A /\ -. <. x , y >. e. `' B ) ) |
|
| 11 | 7 8 | opelcnv | |- ( <. x , y >. e. `' A <-> <. y , x >. e. A ) |
| 12 | 7 8 | opelcnv | |- ( <. x , y >. e. `' B <-> <. y , x >. e. B ) |
| 13 | 12 | notbii | |- ( -. <. x , y >. e. `' B <-> -. <. y , x >. e. B ) |
| 14 | 11 13 | anbi12i | |- ( ( <. x , y >. e. `' A /\ -. <. x , y >. e. `' B ) <-> ( <. y , x >. e. A /\ -. <. y , x >. e. B ) ) |
| 15 | 10 14 | bitri | |- ( <. x , y >. e. ( `' A \ `' B ) <-> ( <. y , x >. e. A /\ -. <. y , x >. e. B ) ) |
| 16 | 6 9 15 | 3bitr4i | |- ( <. x , y >. e. `' ( A \ B ) <-> <. x , y >. e. ( `' A \ `' B ) ) |
| 17 | 1 5 16 | eqrelriiv | |- `' ( A \ B ) = ( `' A \ `' B ) |