This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a union is the union of converses. Theorem 16 of Suppes p. 62. (Contributed by NM, 25-Mar-1998) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvun |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv | ||
| 2 | unopab | ||
| 3 | brun | ||
| 4 | 3 | opabbii | |
| 5 | 2 4 | eqtr4i | |
| 6 | 1 5 | eqtr4i | |
| 7 | df-cnv | ||
| 8 | df-cnv | ||
| 9 | 7 8 | uneq12i | |
| 10 | 6 9 | eqtr4i |