This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preimage of a superset of the range of a class is the domain of the class. Generalization of cnvimarndm for subsets. (Contributed by AV, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvimassrndm | |- ( ran F C_ A -> ( `' F " A ) = dom F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 | |- ( ran F C_ A <-> ( ran F u. A ) = A ) |
|
| 2 | imaeq2 | |- ( A = ( ran F u. A ) -> ( `' F " A ) = ( `' F " ( ran F u. A ) ) ) |
|
| 3 | imaundi | |- ( `' F " ( ran F u. A ) ) = ( ( `' F " ran F ) u. ( `' F " A ) ) |
|
| 4 | 2 3 | eqtrdi | |- ( A = ( ran F u. A ) -> ( `' F " A ) = ( ( `' F " ran F ) u. ( `' F " A ) ) ) |
| 5 | cnvimarndm | |- ( `' F " ran F ) = dom F |
|
| 6 | 5 | uneq1i | |- ( ( `' F " ran F ) u. ( `' F " A ) ) = ( dom F u. ( `' F " A ) ) |
| 7 | cnvimass | |- ( `' F " A ) C_ dom F |
|
| 8 | ssequn2 | |- ( ( `' F " A ) C_ dom F <-> ( dom F u. ( `' F " A ) ) = dom F ) |
|
| 9 | 7 8 | mpbi | |- ( dom F u. ( `' F " A ) ) = dom F |
| 10 | 6 9 | eqtri | |- ( ( `' F " ran F ) u. ( `' F " A ) ) = dom F |
| 11 | 4 10 | eqtrdi | |- ( A = ( ran F u. A ) -> ( `' F " A ) = dom F ) |
| 12 | 11 | eqcoms | |- ( ( ran F u. A ) = A -> ( `' F " A ) = dom F ) |
| 13 | 1 12 | sylbi | |- ( ran F C_ A -> ( `' F " A ) = dom F ) |