This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership (epsilon) relation and its converse are disjoint, i.e., _E is an asymmetric relation. Variable-free version of en2lp . (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 19-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvepnep | |- ( `' _E i^i _E ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eprel | |- _E = { <. y , x >. | y e. x } |
|
| 2 | 1 | cnveqi | |- `' _E = `' { <. y , x >. | y e. x } |
| 3 | cnvopab | |- `' { <. y , x >. | y e. x } = { <. x , y >. | y e. x } |
|
| 4 | 2 3 | eqtri | |- `' _E = { <. x , y >. | y e. x } |
| 5 | df-eprel | |- _E = { <. x , y >. | x e. y } |
|
| 6 | 4 5 | ineq12i | |- ( `' _E i^i _E ) = ( { <. x , y >. | y e. x } i^i { <. x , y >. | x e. y } ) |
| 7 | inopab | |- ( { <. x , y >. | y e. x } i^i { <. x , y >. | x e. y } ) = { <. x , y >. | ( y e. x /\ x e. y ) } |
|
| 8 | 6 7 | eqtri | |- ( `' _E i^i _E ) = { <. x , y >. | ( y e. x /\ x e. y ) } |
| 9 | en2lp | |- -. ( y e. x /\ x e. y ) |
|
| 10 | 9 | gen2 | |- A. x A. y -. ( y e. x /\ x e. y ) |
| 11 | opab0 | |- ( { <. x , y >. | ( y e. x /\ x e. y ) } = (/) <-> A. x A. y -. ( y e. x /\ x e. y ) ) |
|
| 12 | 10 11 | mpbir | |- { <. x , y >. | ( y e. x /\ x e. y ) } = (/) |
| 13 | 8 12 | eqtri | |- ( `' _E i^i _E ) = (/) |