This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership (epsilon) relation and its converse are disjoint, i.e., _E is an asymmetric relation. Variable-free version of en2lp . (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 19-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvepnep | ⊢ ( ◡ E ∩ E ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eprel | ⊢ E = { 〈 𝑦 , 𝑥 〉 ∣ 𝑦 ∈ 𝑥 } | |
| 2 | 1 | cnveqi | ⊢ ◡ E = ◡ { 〈 𝑦 , 𝑥 〉 ∣ 𝑦 ∈ 𝑥 } |
| 3 | cnvopab | ⊢ ◡ { 〈 𝑦 , 𝑥 〉 ∣ 𝑦 ∈ 𝑥 } = { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 ∈ 𝑥 } | |
| 4 | 2 3 | eqtri | ⊢ ◡ E = { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 ∈ 𝑥 } |
| 5 | df-eprel | ⊢ E = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ 𝑦 } | |
| 6 | 4 5 | ineq12i | ⊢ ( ◡ E ∩ E ) = ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 ∈ 𝑥 } ∩ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ 𝑦 } ) |
| 7 | inopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑦 ∈ 𝑥 } ∩ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ∈ 𝑦 } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) } | |
| 8 | 6 7 | eqtri | ⊢ ( ◡ E ∩ E ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) } |
| 9 | en2lp | ⊢ ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) | |
| 10 | 9 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) |
| 11 | opab0 | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) } = ∅ ↔ ∀ 𝑥 ∀ 𝑦 ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) | |
| 12 | 10 11 | mpbir | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) } = ∅ |
| 13 | 8 12 | eqtri | ⊢ ( ◡ E ∩ E ) = ∅ |