This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnv0 as of 31-Jan-2026. (Contributed by NM, 6-Apr-1998) Remove dependency on ax-sep , ax-nul , ax-pr . (Revised by KP, 25-Oct-2021) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnv0OLD | |- `' (/) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br0 | |- -. y (/) z |
|
| 2 | 1 | intnan | |- -. ( x = <. z , y >. /\ y (/) z ) |
| 3 | 2 | nex | |- -. E. y ( x = <. z , y >. /\ y (/) z ) |
| 4 | 3 | nex | |- -. E. z E. y ( x = <. z , y >. /\ y (/) z ) |
| 5 | df-cnv | |- `' (/) = { <. z , y >. | y (/) z } |
|
| 6 | df-opab | |- { <. z , y >. | y (/) z } = { x | E. z E. y ( x = <. z , y >. /\ y (/) z ) } |
|
| 7 | 5 6 | eqtri | |- `' (/) = { x | E. z E. y ( x = <. z , y >. /\ y (/) z ) } |
| 8 | 7 | eqabri | |- ( x e. `' (/) <-> E. z E. y ( x = <. z , y >. /\ y (/) z ) ) |
| 9 | 4 8 | mtbir | |- -. x e. `' (/) |
| 10 | 9 | nel0 | |- `' (/) = (/) |