This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function is continuous. (Contributed by FL, 15-Jan-2007) (Proof shortened by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnconst | |- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) /\ ( B e. Y /\ F : X --> { B } ) ) -> F e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst2g | |- ( B e. Y -> ( F : X --> { B } <-> F = ( X X. { B } ) ) ) |
|
| 2 | 1 | adantl | |- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) /\ B e. Y ) -> ( F : X --> { B } <-> F = ( X X. { B } ) ) ) |
| 3 | cnconst2 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) /\ B e. Y ) -> ( X X. { B } ) e. ( J Cn K ) ) |
|
| 4 | 3 | 3expa | |- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) /\ B e. Y ) -> ( X X. { B } ) e. ( J Cn K ) ) |
| 5 | eleq1 | |- ( F = ( X X. { B } ) -> ( F e. ( J Cn K ) <-> ( X X. { B } ) e. ( J Cn K ) ) ) |
|
| 6 | 4 5 | syl5ibrcom | |- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) /\ B e. Y ) -> ( F = ( X X. { B } ) -> F e. ( J Cn K ) ) ) |
| 7 | 2 6 | sylbid | |- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) /\ B e. Y ) -> ( F : X --> { B } -> F e. ( J Cn K ) ) ) |
| 8 | 7 | impr | |- ( ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) /\ ( B e. Y /\ F : X --> { B } ) ) -> F e. ( J Cn K ) ) |