This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function is continuous. (Contributed by FL, 15-Jan-2007) (Proof shortened by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnconst | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝐵 ∈ 𝑌 ∧ 𝐹 : 𝑋 ⟶ { 𝐵 } ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconst2g | ⊢ ( 𝐵 ∈ 𝑌 → ( 𝐹 : 𝑋 ⟶ { 𝐵 } ↔ 𝐹 = ( 𝑋 × { 𝐵 } ) ) ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐵 ∈ 𝑌 ) → ( 𝐹 : 𝑋 ⟶ { 𝐵 } ↔ 𝐹 = ( 𝑋 × { 𝐵 } ) ) ) |
| 3 | cnconst2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐵 ∈ 𝑌 ) → ( 𝑋 × { 𝐵 } ) ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 4 | 3 | 3expa | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐵 ∈ 𝑌 ) → ( 𝑋 × { 𝐵 } ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 5 | eleq1 | ⊢ ( 𝐹 = ( 𝑋 × { 𝐵 } ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑋 × { 𝐵 } ) ∈ ( 𝐽 Cn 𝐾 ) ) ) | |
| 6 | 4 5 | syl5ibrcom | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐵 ∈ 𝑌 ) → ( 𝐹 = ( 𝑋 × { 𝐵 } ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 7 | 2 6 | sylbid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐵 ∈ 𝑌 ) → ( 𝐹 : 𝑋 ⟶ { 𝐵 } → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 8 | 7 | impr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ ( 𝐵 ∈ 𝑌 ∧ 𝐹 : 𝑋 ⟶ { 𝐵 } ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |