This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of continuous complex functions from A to B . (Contributed by Paul Chapman, 26-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elcncf1d.1 | |- ( ph -> F : A --> B ) |
|
| elcncf1d.2 | |- ( ph -> ( ( x e. A /\ y e. RR+ ) -> Z e. RR+ ) ) |
||
| elcncf1d.3 | |- ( ph -> ( ( ( x e. A /\ w e. A ) /\ y e. RR+ ) -> ( ( abs ` ( x - w ) ) < Z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) ) |
||
| Assertion | elcncf1di | |- ( ph -> ( ( A C_ CC /\ B C_ CC ) -> F e. ( A -cn-> B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcncf1d.1 | |- ( ph -> F : A --> B ) |
|
| 2 | elcncf1d.2 | |- ( ph -> ( ( x e. A /\ y e. RR+ ) -> Z e. RR+ ) ) |
|
| 3 | elcncf1d.3 | |- ( ph -> ( ( ( x e. A /\ w e. A ) /\ y e. RR+ ) -> ( ( abs ` ( x - w ) ) < Z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) ) |
|
| 4 | 2 | imp | |- ( ( ph /\ ( x e. A /\ y e. RR+ ) ) -> Z e. RR+ ) |
| 5 | an32 | |- ( ( ( x e. A /\ w e. A ) /\ y e. RR+ ) <-> ( ( x e. A /\ y e. RR+ ) /\ w e. A ) ) |
|
| 6 | 5 | bianass | |- ( ( ph /\ ( ( x e. A /\ w e. A ) /\ y e. RR+ ) ) <-> ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ w e. A ) ) |
| 7 | 3 | imp | |- ( ( ph /\ ( ( x e. A /\ w e. A ) /\ y e. RR+ ) ) -> ( ( abs ` ( x - w ) ) < Z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) |
| 8 | 6 7 | sylbir | |- ( ( ( ph /\ ( x e. A /\ y e. RR+ ) ) /\ w e. A ) -> ( ( abs ` ( x - w ) ) < Z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) |
| 9 | 8 | ralrimiva | |- ( ( ph /\ ( x e. A /\ y e. RR+ ) ) -> A. w e. A ( ( abs ` ( x - w ) ) < Z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) |
| 10 | breq2 | |- ( z = Z -> ( ( abs ` ( x - w ) ) < z <-> ( abs ` ( x - w ) ) < Z ) ) |
|
| 11 | 10 | rspceaimv | |- ( ( Z e. RR+ /\ A. w e. A ( ( abs ` ( x - w ) ) < Z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) -> E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) |
| 12 | 4 9 11 | syl2anc | |- ( ( ph /\ ( x e. A /\ y e. RR+ ) ) -> E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) |
| 13 | 12 | ralrimivva | |- ( ph -> A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) |
| 14 | 1 13 | jca | |- ( ph -> ( F : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) ) |
| 15 | elcncf | |- ( ( A C_ CC /\ B C_ CC ) -> ( F e. ( A -cn-> B ) <-> ( F : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) ) ) |
|
| 16 | 14 15 | syl5ibrcom | |- ( ph -> ( ( A C_ CC /\ B C_ CC ) -> F e. ( A -cn-> B ) ) ) |